Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza sativa ssp. Japonica seedlings

Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza... Low temperature is a major factor limiting rice growth and yield, and seedling is one of the developmental stages at which sensitivity to chilling stress is higher. Tolerance to chilling is a complex quantitative trait, so one of the most effective approaches to identify genes and pathways involved is to compare the stress-induced expression changes between tolerant and sensitive genotypes. Phenotypic responses to chilling of 13 Japonica cultivars were evaluated, and Thaibonnet and Volano were selected as sensitive and tolerant genotypes, respectively. To thoroughly profile the short-term response of the two cultivars to chilling, RNA-Seq was performed on Thaibonnet and Volano seedlings after 0 (not stressed), 2, and 10 h at 10 °C. Differential expression analysis revealed that the ICE-DREB1/CBF pathway plays a primary role in chilling tolerance, mainly due to some important transcription factors involved (some of which had never been reported before). Moreover, the expression trends of some genes that were radically different between Thaibonnet and Volano (i.e., calcium-dependent protein kinases OsCDPK21 and OsCDPK23, cytochrome P450 monooxygenase CYP76M8, etc.) suggest their involvement in low temperature tolerance too. Density of differentially expressed genes along rice genome was determined and linked to the position of known QTLs: remarkable co-locations http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Functional & Integrative Genomics Springer Journals

Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza sativa ssp. Japonica seedlings

Loading next page...
 
/lp/springer_journal/transcriptome-profiling-of-short-term-response-to-chilling-stress-in-s6IMFMIeX0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Cell Biology; Plant Genetics and Genomics; Microbial Genetics and Genomics; Biochemistry, general; Bioinformatics; Animal Genetics and Genomics
ISSN
1438-793X
eISSN
1438-7948
D.O.I.
10.1007/s10142-018-0615-y
Publisher site
See Article on Publisher Site

Abstract

Low temperature is a major factor limiting rice growth and yield, and seedling is one of the developmental stages at which sensitivity to chilling stress is higher. Tolerance to chilling is a complex quantitative trait, so one of the most effective approaches to identify genes and pathways involved is to compare the stress-induced expression changes between tolerant and sensitive genotypes. Phenotypic responses to chilling of 13 Japonica cultivars were evaluated, and Thaibonnet and Volano were selected as sensitive and tolerant genotypes, respectively. To thoroughly profile the short-term response of the two cultivars to chilling, RNA-Seq was performed on Thaibonnet and Volano seedlings after 0 (not stressed), 2, and 10 h at 10 °C. Differential expression analysis revealed that the ICE-DREB1/CBF pathway plays a primary role in chilling tolerance, mainly due to some important transcription factors involved (some of which had never been reported before). Moreover, the expression trends of some genes that were radically different between Thaibonnet and Volano (i.e., calcium-dependent protein kinases OsCDPK21 and OsCDPK23, cytochrome P450 monooxygenase CYP76M8, etc.) suggest their involvement in low temperature tolerance too. Density of differentially expressed genes along rice genome was determined and linked to the position of known QTLs: remarkable co-locations

Journal

Functional & Integrative GenomicsSpringer Journals

Published: Jun 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off