Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression

Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act... To analyze cellular responses to ozone (O3), we performed a large-scale analysis of the Arabidopsis transcriptome after plants were exposed to O3 for 12 h. By using cDNA macroarray technology, we identified 205 non-redundant expressed sequence tags (ESTs) that were regulated by O3. Of these, 157 were induced and 48 were suppressed by O3. A substantial proportion of these ESTs had predicted functions in cell rescue/defense processes. Using these isolated ESTs, we also undertook a comprehensive investigation of how three hormones, ethylene (ET), jasmonic acid (JA), and salicylic acid (SA), interact to regulate O3-induced genes in various genetic backgrounds of Arabidopsis, such as the ET-insensitive ein2-1, JA-resistant jar1-1, and SA-insensitive npr1-1. The expression of half of the 157 induced genes, especially cell rescue/defense genes, was controlled by ET and JA signaling, indicating that O3-induced defense gene expression at this stage was mainly regulated by ET and JA. Clustering analysis of the 157 O3-induced gene expressions revealed that multiple signal pathways act mutually antagonistically to induce the expression of these genes, and many cell rescue/defense genes induced by ET and JA signal pathways were suppressed by SA signaling, suggesting that the SA pathway acts as a strong antagonist to gene expression induced by ET and JA signaling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression

Loading next page...
 
/lp/springer_journal/transcriptome-analysis-of-o3-exposed-arabidopsis-reveals-that-multiple-Ksr9KJ88A0
Publisher
Springer Netherlands
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000019064.55734.52
Publisher site
See Article on Publisher Site

Abstract

To analyze cellular responses to ozone (O3), we performed a large-scale analysis of the Arabidopsis transcriptome after plants were exposed to O3 for 12 h. By using cDNA macroarray technology, we identified 205 non-redundant expressed sequence tags (ESTs) that were regulated by O3. Of these, 157 were induced and 48 were suppressed by O3. A substantial proportion of these ESTs had predicted functions in cell rescue/defense processes. Using these isolated ESTs, we also undertook a comprehensive investigation of how three hormones, ethylene (ET), jasmonic acid (JA), and salicylic acid (SA), interact to regulate O3-induced genes in various genetic backgrounds of Arabidopsis, such as the ET-insensitive ein2-1, JA-resistant jar1-1, and SA-insensitive npr1-1. The expression of half of the 157 induced genes, especially cell rescue/defense genes, was controlled by ET and JA signaling, indicating that O3-induced defense gene expression at this stage was mainly regulated by ET and JA. Clustering analysis of the 157 O3-induced gene expressions revealed that multiple signal pathways act mutually antagonistically to induce the expression of these genes, and many cell rescue/defense genes induced by ET and JA signal pathways were suppressed by SA signaling, suggesting that the SA pathway acts as a strong antagonist to gene expression induced by ET and JA signaling.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off