Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications

Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and... The combined knowledge of the Arabidopsis genome and transcriptome now allows to get an integrated view of the dynamics and evolution of metabolic pathways in plants. We used publicly available sets of microarray data obtained in a wide range of different stress and developmental conditions to investigate the co-expression of genes encoding enzymes of secondary metabolism pathways, in particular indoles, phenylpropanoids, and flavonoids. We performed hierarchical clustering of gene expression profiles and found that major enzymes of each pathway display a clear and robust co-expression throughout all the conditions studied. Moreover, detailed analysis evidenced that some genes display co-regulation in particular physiological conditions only, certainly reflecting their modular recruitment into stress- or developmentally regulated biosynthetic pathways. The combination of these microarray data with sequence analysis allows to draw very precise hypotheses on the function of otherwise uncharacterized genes. To illustrate this approach, we focused our analysis on secondary metabolism glycosyltransferases (UGTs), a multigenic family involved in the conjugation of small molecules to sugars like glucose. We propose that UGT74B1 and UGT74C1 may be involved in aromatic and aliphatic glucosinolates synthesis, respectively. We also suggest that UGT75C1 may function as an anthocyanin-5-O-glucosyltransferase in planta. Therefore, this data-mining approach appears very powerful for the functional prediction of unknown genes, and could be transposed to virtually any other gene family. Finally, we suggest that analysis of expression pattern divergence of duplicated genes also provides some insight into the mechanisms of metabolic pathway evolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis: functional and evolutionary implications

Loading next page...
 
/lp/springer_journal/transcriptional-co-regulation-of-secondary-metabolism-enzymes-in-UirrDVVnnH
Publisher
Springer Netherlands
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-5346-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial