Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites

Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing... Blumeria graminis f.sp. tritici, the causal agent of powdery mildew in wheat, is an obligate biotrophic fungus that exclusively invades epidermal cells. As previously shown, spraying of a solution of syringolin A, a circular peptide derivative secreted by the phytopathogenic bacterium Pseudomonas syringae pv. syringae, triggers hypersensitive cell death at infection sites in powdery mildew infected wheat. Thus, the fungus is essentially eradicated. Here we show that syringolin A also triggers hypersensitive cell death in Arabidopsis infected with the powdery mildew fungus Erysiphe cichoracearum. To monitor transcriptional changes associated with this effect, we cloned 307 cDNA clones representing 158 unigenes from powdery mildew infected, syringolin A sprayed wheat leaves by a suppression subtractive hybridization cloning procedure. These cDNAs were microarrayed onto glass slides together with 1088 cDNA-AFLP clones from powdery mildew-infected wheat. Microarray hybridization experiments were performed with probes derived from leaves, epidermal tissue, and mesophyll preparations of mildewed or uninfected wheat plants after syringolin A or control treatment. Similar experiments were performed in Arabidopsis using the Affymetrix ATH1 whole genome GeneChip. The results indicate a conserved mode of action of syringolin A as similar gene groups are induced in both species. Prominent groups include genes associated with the proteasomal degradation pathway, mitochondrial and other heat shock genes, genes involved in mitochondrial alternative electron pathways, and genes encoding glycolytic and fermentative enzymes. Surprisingly, in both species the observed transcriptional response to syringolin A was considerably weaker in infected plants as compared to uninfected plants. The results lead to the working hypothesis that cell death observed at infection sites may result from a parasite-induced suppression of the transcriptional response and thus to insufficient production of protective proteins necessary for the recovery of these cells from whatever insult is imposed by syringolin A. Plant Molecular Biology Springer Journals

Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites

Loading next page...
Kluwer Academic Publishers
Copyright © 2006 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial