Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress

Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza)... We investigated the transcriptional response of Burma mangrove (Bruguiera gymnorhiza) to high salinity (salt stress; 500 mM NaCl) and hyperosmotic stress (osmotic stress; 1 M sorbitol) by microarray analysis. ANOVA (P < 0.05) and significant analysis of microarray (SAM; FDR < 5%) revealed that 865 of 11,997 genes showed significant differential expression under salt and osmotic stress. Scatter plot analysis revealed that the expression level of genes changed at 6 h after salt stress treatment, but recovered at 24 h, while the change at 6 h after osmotic stress treatment diverged at 24 h. Hierarchical clustering of the 865 genes showed that expression profiles under salt stress were distinctly different from those under osmotic stress. Comparison of gene ontology (GO) categories of differentially expressed genes under the stress conditions revealed that the adaptation of Burma mangrove to salt stress was accompanied by the up-regulation of genes categorized for “cell communication,” “signal transduction,” “lipid metabolic process,” “photosynthesis,” “multicellular organismal development,” and “transport,” and by down-regulation of genes categorized for “catabolic process.” Burma mangrove maintained its leaf water potential and recovered from its photosynthesis rate that declined temporarily under salt stress, but not under osmotic stress. These results demonstrated a fundamental difference between the response to salt and osmotic stress. Ion and sugar content analysis suggested that salt tolerance of Burma mangrove might be attributed to their ability to accumulate high concentrations of Na+ and Cl−, even under non-stressed conditions; to uptake additional Na+ and Cl− for use as osmolytes; and to maintain K+ homeostasis under salt stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress

Loading next page...
 
/lp/springer_journal/transcriptional-and-physiological-study-of-the-response-of-burma-EUSQJJ6Pk7
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9356-y
Publisher site
See Article on Publisher Site

Abstract

We investigated the transcriptional response of Burma mangrove (Bruguiera gymnorhiza) to high salinity (salt stress; 500 mM NaCl) and hyperosmotic stress (osmotic stress; 1 M sorbitol) by microarray analysis. ANOVA (P < 0.05) and significant analysis of microarray (SAM; FDR < 5%) revealed that 865 of 11,997 genes showed significant differential expression under salt and osmotic stress. Scatter plot analysis revealed that the expression level of genes changed at 6 h after salt stress treatment, but recovered at 24 h, while the change at 6 h after osmotic stress treatment diverged at 24 h. Hierarchical clustering of the 865 genes showed that expression profiles under salt stress were distinctly different from those under osmotic stress. Comparison of gene ontology (GO) categories of differentially expressed genes under the stress conditions revealed that the adaptation of Burma mangrove to salt stress was accompanied by the up-regulation of genes categorized for “cell communication,” “signal transduction,” “lipid metabolic process,” “photosynthesis,” “multicellular organismal development,” and “transport,” and by down-regulation of genes categorized for “catabolic process.” Burma mangrove maintained its leaf water potential and recovered from its photosynthesis rate that declined temporarily under salt stress, but not under osmotic stress. These results demonstrated a fundamental difference between the response to salt and osmotic stress. Ion and sugar content analysis suggested that salt tolerance of Burma mangrove might be attributed to their ability to accumulate high concentrations of Na+ and Cl−, even under non-stressed conditions; to uptake additional Na+ and Cl− for use as osmolytes; and to maintain K+ homeostasis under salt stress.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 21, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off