Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores

Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores Higher plant microspores, when subjected to various stress treatments in vitro, are able to reprogram their regular gametophytic development towards the sporophytic pathway to form haploid embryos and plants. Suppression subtractive hybridization (SSH) and metabolic profiling were used to characterize this developmental switch. Following differential reverse Northern hybridizations 90 distinct up-regulated sequences were identified in stressed, embryogenic microspores (accessible at www.univie.ac.at/ntsm). Sequence analyses allowed the classification of these genes into functional clusters such as metabolism, chromosome remodeling, signaling, transcription and translation, while the putative functions of half of the sequences remained unknown. A comparison of metabolic profiles of non-stressed and stressed microspores using gas chromatography/mass spectrometry (GC/MS) identified 70 compounds, partly displaying significant changes in metabolite levels, e.g., highly elevated levels of isocitrate and isomaltose in stressed microspores compared to non-stressed microspores. The formation of embryogenic microspores is discussed on the basis of the identified transcriptional and metabolic profiles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Loading next page...
 
/lp/springer_journal/transcriptional-and-metabolic-profiles-of-stress-induced-embryogenic-B476gTEnRR

References (66)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-006-9078-y
pmid
17016740
Publisher site
See Article on Publisher Site

Abstract

Higher plant microspores, when subjected to various stress treatments in vitro, are able to reprogram their regular gametophytic development towards the sporophytic pathway to form haploid embryos and plants. Suppression subtractive hybridization (SSH) and metabolic profiling were used to characterize this developmental switch. Following differential reverse Northern hybridizations 90 distinct up-regulated sequences were identified in stressed, embryogenic microspores (accessible at www.univie.ac.at/ntsm). Sequence analyses allowed the classification of these genes into functional clusters such as metabolism, chromosome remodeling, signaling, transcription and translation, while the putative functions of half of the sequences remained unknown. A comparison of metabolic profiles of non-stressed and stressed microspores using gas chromatography/mass spectrometry (GC/MS) identified 70 compounds, partly displaying significant changes in metabolite levels, e.g., highly elevated levels of isocitrate and isomaltose in stressed microspores compared to non-stressed microspores. The formation of embryogenic microspores is discussed on the basis of the identified transcriptional and metabolic profiles.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2006

There are no references for this article.