Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco

Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress... Increasing evidences show that ethylene-responsive factor (ERF) proteins regulate plant stress response and the interaction of different stress responsive pathways through interacting with different cis-acting elements, even other transcription factors. Here, we report a transcriptional activator TSRF1, which was previously demonstrated to regulate plant resistance to Ralstonia solanacearum, reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Sequence analysis revealed that TSRF1 contains a putative transcriptional activation domain. Using yeast two hybrid system we evidenced that this activation domain is essential for activating the expression of reporter gene. To confirm the broad-spectrum pathogen resistance of TSRF1 we observed that over-expressing TSRF1 enhances the resistance to Pseudomonas syringae and Botrytis cinerea in both tobacco and tomato plants, but RNA interference of TSRF1 in tomato plants decreases the resistance to these pathogens, unraveling the positive regulation of TSRF1 in plant pathogen infections. The expression of TSRF1 in response to NaCl and mannitol suggests the possible functions of TSRF1 in osmotic stress responses, but the physiological tests indicate that expressing TSRF1 in tobaccos decreases tolerance to NaCl or mannitol during germination and seedling root development, and this result was consistent with PEG6000 treatment with mature tobacco seedlings, indicating the negative modulation of TSRF1 in osmotic stress response. Therefore, our research reveals that transcriptional activator TSRF1 reversely regulates plant pathogen resistance and osmotic stress response. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco

Loading next page...
 
/lp/springer_journal/transcriptional-activator-tsrf1-reversely-regulates-pathogen-f6oAcjMfAr
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9072-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial