Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection

Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal... Plants respond to pathogen infection with the activation of the expression of pathogenesis-related genes, a response that involves Ca2+-regulated protein phosphorylation processes. We report here the isolation of a full-length complementary DNA encoding a calcium-dependent protein kinase (CPK) gene from maize. CPK genes occur in maize as members of a multigene family, but only one specific CPK gene, the ZmCPK10 gene here described, is transcriptionally activated in response to both fungal infection and treatment with fungal elicitors. Activation of the ZmCPK10 gene is extremely rapid. ZmCPK10 transcripts could be detected 5 min after elicitation and reached maximum levels at 30 min after treatment. Afterwards, there was a decline in the level of ZmCPK10 transcripts followed by a basal level of accumulation which is maintained over the time period of elicitor treatment. The activation of this kinase is accompanied by an increase in the level of PRms mRNA, the PRms being a pathogenesis-related protein from maize whose expression is induced in maize tissues in response to fungal infection and treatment with fungal elicitors. In situ mRNA hybridization analysis revealed a remarkable cell-type specific pattern of expression of ZmCPK10 during growth and development of the elicitor-treated or fungus-infected seedling. Moreover, theZmCPK10 gene is expressed only in those specific cell types in which the PRms gene is also expressed. The involvement of ZmCPK10 in the elicitor-induced signal transduction pathway leading to the activation of PRms gene expression is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection

Loading next page...
 
/lp/springer_journal/transcriptional-activation-of-a-maize-calcium-dependent-protein-kinase-40z9jRZ4Uq
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006430707075
Publisher site
See Article on Publisher Site

Abstract

Plants respond to pathogen infection with the activation of the expression of pathogenesis-related genes, a response that involves Ca2+-regulated protein phosphorylation processes. We report here the isolation of a full-length complementary DNA encoding a calcium-dependent protein kinase (CPK) gene from maize. CPK genes occur in maize as members of a multigene family, but only one specific CPK gene, the ZmCPK10 gene here described, is transcriptionally activated in response to both fungal infection and treatment with fungal elicitors. Activation of the ZmCPK10 gene is extremely rapid. ZmCPK10 transcripts could be detected 5 min after elicitation and reached maximum levels at 30 min after treatment. Afterwards, there was a decline in the level of ZmCPK10 transcripts followed by a basal level of accumulation which is maintained over the time period of elicitor treatment. The activation of this kinase is accompanied by an increase in the level of PRms mRNA, the PRms being a pathogenesis-related protein from maize whose expression is induced in maize tissues in response to fungal infection and treatment with fungal elicitors. In situ mRNA hybridization analysis revealed a remarkable cell-type specific pattern of expression of ZmCPK10 during growth and development of the elicitor-treated or fungus-infected seedling. Moreover, theZmCPK10 gene is expressed only in those specific cell types in which the PRms gene is also expressed. The involvement of ZmCPK10 in the elicitor-induced signal transduction pathway leading to the activation of PRms gene expression is discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off