Transcription Factors in Rice: A Genome-wide Comparative Analysis between Monocots and Eudicots

Transcription Factors in Rice: A Genome-wide Comparative Analysis between Monocots and Eudicots It is not known how representative the Arabidopsis thaliana complement of transcription factors (TFs) is of other plants. The availability of rice (Oryza sativa) genome sequences makes possible a comparative analysis of TFs between monocots and eudicots, the two major monophyletic groups of angiosperms. Here, we identified 1611 TF genes that belong to 37 gene families in rice, comparable to the 1510 in Arabidopsis. Several gene subfamilies, but no families, were found to be lineage-specific. Phylogenetic analyses indicated that nearly half of the TF genes form clear orthologous pairs or groups, which were derived from 383 ancestral genes in the common ancestor of rice and Arabidopsis. Investigating gene duplication mechanisms revealed twelve pairs of large intragenomic duplicated blocks, which account for more than 40% of the rice genome. About 60% of the duplicated TF genes have been retained on duplicated segments. Functional conservation and diversification of TFs across monocot and eudicot lineages are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Transcription Factors in Rice: A Genome-wide Comparative Analysis between Monocots and Eudicots

Loading next page...
 
/lp/springer_journal/transcription-factors-in-rice-a-genome-wide-comparative-analysis-0TkhX0zCVn
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-6503-6
Publisher site
See Article on Publisher Site

Abstract

It is not known how representative the Arabidopsis thaliana complement of transcription factors (TFs) is of other plants. The availability of rice (Oryza sativa) genome sequences makes possible a comparative analysis of TFs between monocots and eudicots, the two major monophyletic groups of angiosperms. Here, we identified 1611 TF genes that belong to 37 gene families in rice, comparable to the 1510 in Arabidopsis. Several gene subfamilies, but no families, were found to be lineage-specific. Phylogenetic analyses indicated that nearly half of the TF genes form clear orthologous pairs or groups, which were derived from 383 ancestral genes in the common ancestor of rice and Arabidopsis. Investigating gene duplication mechanisms revealed twelve pairs of large intragenomic duplicated blocks, which account for more than 40% of the rice genome. About 60% of the duplicated TF genes have been retained on duplicated segments. Functional conservation and diversification of TFs across monocot and eudicot lineages are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 22, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off