Transcellular Chloride Pathways in Ambystoma Proximal Tubule

Transcellular Chloride Pathways in Ambystoma Proximal Tubule The transport mechanisms of Ambystoma proximal tubule that mediate transcellular Cl− absorption linked to Na+ were investigated in isolated perfused tubules using Cl−-selective and voltage-recording microelectrodes. In control solutions intracellular activity of Cl− (a i Cl ) is 11.3 ± 0.5 mm, the basolateral (V 1 ), apical (V 2 ), and transepithelial (V 3 ) potential differences are −68 ± 1.2 mV, +62 ± 1.2 mV and −6.4 ± 0.3 mV, respectively. When Na+ absorption is decreased by removal of organic substrates from the lumen, a i Cl falls by 1.3 ± 0.3 mm and V 2 hyperpolarizes by +11.4 ± 1.7 mV. Subsequent removal of Na+ from the lumen causes a i Cl to fall further by 2.3 ± 0.4 mm and V 2 to hyperpolarize further by +15.3 ± 2.4 mV. The contribution of transporters and channels to the observed changes of a i Cl was examined using ion substitutions and inhibitors. Apical Na/Cl or Na/K/2Cl symport is excluded because bumetanide, furosemide or hydrochlorothiazide have no effect on a i Cl . The effects of luminal HCO− 3 removal and/or of disulfonic stilbenes argue against the presence of apical Cl-base exchange such as Cl-HCO3 or Cl-OH. The effects of basolateral HCO− 3 removal, of basolateral Na+ removal and/or of disulfonic stilbenes are compatible with presence of basolateral Na-independent Cl-base exchange and Na-driven Cl-HCO3 exchange. Several lines of evidence favor conductive Cl− transport across both the apical and basolateral membrane. Addition of the chloride-channel blocker diphenylamine-2-carboxylate to the lumen or bath, increases the a i Cl by 2.4 ± 0.6 mm or 2.9 ± 1.0 mm respectively. Moreover, following inhibition by DIDS of all anion exchangers in HCO− 3-free Ringer, the equilibrium potential for Cl− does not differ from the membrane potential V 2 . Finally, the logarithmic changes in a i Cl in various experimental conditions correlate well with the simultaneous changes in either basolateral or apical membrane potential. These findings strongly support the presence of Cl− channels at the apical and basolateral cell membranes of the proximal tubule. The Journal of Membrane Biology Springer Journals

Transcellular Chloride Pathways in Ambystoma Proximal Tubule

Loading next page...
Copyright © 1998 by Springer-Verlag New York Inc.
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial