Traffic Studies for Fast Optical Switching in an Intelligent Optical Network

Traffic Studies for Fast Optical Switching in an Intelligent Optical Network The optical layer of the transport network is expected in the (near) future to make the transition from a statically configured layer to a fully flexible, automatic and intelligent layer. Such an intelligent optical network (ION) allows to set up (or tear down) bandwidth between two nodes on demand, following a simple request of the client network layer: the so-called switched connections. For successful deployment of these switched connections it is of utmost importance to have a well-educated idea about the granularities of the traffic flows in the optical transport network. Deploying switched connections with a capacity of 10 Gbps to transport a traffic demand with a granularity of a few hundred Mbps does not exactly make efficient use of the network resources. In this paper, the granularity of the traffic demand between US metro areas is investigated for two future points in time, namely 2006 and 2010. For this study we focus on the traffic flows between two metro area entities: the points of presence (PoPs) or the main aggregation points of the customer traffic in a metro area, and the collector central offices (COs) or the nodes a bit further in the metro area, closer to the end-customers. We have found that a significant portion of the total traffic volume at these moments in time will qualify for transport using switched connections with a capacity of 10 Gbps. According to our study, in 2006 around one third of the traffic will qualify for transportation in such 10 Gbps connections between PoPs in different metro areas, while by 2010 this amount will have increased to more than 99%. The traffic granularity between the collector COs, however, will in 2006 still be too small to justify the use of direct 10 Gbps connections, but in 2010 almost three quarter of the traffic could make use of 10 Gbps direct connections from collector CO to collector CO. These results enable us to sketch the expected network evolution scenario and determine the type and size of equipment needed in the different steps of the network evolution. The optical edge aggregation switches will have to be moved deeper into the metro area with time: in 2006 they will be needed at the PoPs, while by 2010 they could be placed at the collector COs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Traffic Studies for Fast Optical Switching in an Intelligent Optical Network

Loading next page...
 
/lp/springer_journal/traffic-studies-for-fast-optical-switching-in-an-intelligent-optical-tYRJ05kIF7
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/B:PNET.0000041239.57221.1a
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial