Tracking of coherent thermal structures on a heated wall.

Tracking of coherent thermal structures on a heated wall. The temporal evolution of a thermal pattern observed on a heated wall by infrared camera is correlated with the propagation velocity of the thermal perturbations calculated by DNS. In the experiment the propagation velocity was measured by using PIV-based analysis of infrared images of the thermal pattern on the wall. To verify the experimental technique of image analysis, a sequence of synthetic images, simulating thermal patterns on the wall, was generated from the DNS solution, and the convective velocity was evaluated. It was found that the convective velocity of thermal structures obtained by PIV-based analysis of the experimental and synthetic images was in relatively good agreement with that calculated from the DNS solution. The present study confirmed that for a high Prandtl number fluid (water) the propagation velocity of the thermal perturbations is only about half of the convective velocity of the velocity perturbations. It was also found that the convection velocity observed for hot spots is distinctly lower than that for the cold spots. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Tracking of coherent thermal structures on a heated wall.

Loading next page...
 
/lp/springer_journal/tracking-of-coherent-thermal-structures-on-a-heated-wall-VD4qKwofGe
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0574-9
Publisher site
See Article on Publisher Site

Abstract

The temporal evolution of a thermal pattern observed on a heated wall by infrared camera is correlated with the propagation velocity of the thermal perturbations calculated by DNS. In the experiment the propagation velocity was measured by using PIV-based analysis of infrared images of the thermal pattern on the wall. To verify the experimental technique of image analysis, a sequence of synthetic images, simulating thermal patterns on the wall, was generated from the DNS solution, and the convective velocity was evaluated. It was found that the convective velocity of thermal structures obtained by PIV-based analysis of the experimental and synthetic images was in relatively good agreement with that calculated from the DNS solution. The present study confirmed that for a high Prandtl number fluid (water) the propagation velocity of the thermal perturbations is only about half of the convective velocity of the velocity perturbations. It was also found that the convection velocity observed for hot spots is distinctly lower than that for the cold spots.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 9, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off