Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization

Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization This study investigated the growth response of Ranunculus sceleratus to pollution and its capacity to accumulate trace metals for its use as a phytoremediator in Lake Maruit, Egypt. Three basins (main basin, fish farm, and southwestern basin) representing the natural distribution of the plant as well as the pollution loads in the lake, were chosen for collecting plant and sediment samples. In each basin ten quadrats (0.5 m × 0.5 m), distributed equally along two sites, were selected for measuring growth parameters, nutrients, and trace metal concentration. The highest biomass of the shoot and root (610 and 236 g m−2) was recorded in the main basin and fish farm, respectively. R. sceleratus accumulated high concentrations of Cu and Pb (27.7 and 9.9 mg kg−1), while toxic concentration of Mn (2508.0 mg kg−1) in their roots compared to shoots. The bioaccumulation factor (BF) for the investigated metals was greater than one, and in the decreasing order: Ni (27.1) > Zn (20.0) > Cd (16.4) > Cu (7.7) > Mn (3.9) > Pb (3.6). The translocation factor of all analyzed trace metals was less than one. The ability of R. sceleratus to accumulate Mn, Ni, Cu, and Pb in its roots indicates the potential use of this species for phytostabilization of these metals (mainly Mn) in contaminated water bodies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization

Loading next page...
 
/lp/springer_journal/trace-metal-accumulation-by-ranunculus-sceleratus-implications-for-BeVYDrF6KA
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0808-2
Publisher site
See Article on Publisher Site

Abstract

This study investigated the growth response of Ranunculus sceleratus to pollution and its capacity to accumulate trace metals for its use as a phytoremediator in Lake Maruit, Egypt. Three basins (main basin, fish farm, and southwestern basin) representing the natural distribution of the plant as well as the pollution loads in the lake, were chosen for collecting plant and sediment samples. In each basin ten quadrats (0.5 m × 0.5 m), distributed equally along two sites, were selected for measuring growth parameters, nutrients, and trace metal concentration. The highest biomass of the shoot and root (610 and 236 g m−2) was recorded in the main basin and fish farm, respectively. R. sceleratus accumulated high concentrations of Cu and Pb (27.7 and 9.9 mg kg−1), while toxic concentration of Mn (2508.0 mg kg−1) in their roots compared to shoots. The bioaccumulation factor (BF) for the investigated metals was greater than one, and in the decreasing order: Ni (27.1) > Zn (20.0) > Cd (16.4) > Cu (7.7) > Mn (3.9) > Pb (3.6). The translocation factor of all analyzed trace metals was less than one. The ability of R. sceleratus to accumulate Mn, Ni, Cu, and Pb in its roots indicates the potential use of this species for phytostabilization of these metals (mainly Mn) in contaminated water bodies.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Nov 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off