Trace analysis of parabens preservatives in drinking water treatment sludge, treated, and mineral water samples

Trace analysis of parabens preservatives in drinking water treatment sludge, treated, and mineral... Parabens have been widely used as antimicrobial agents, mainly in food products, pharmaceuticals, and cosmetics. Although they are known as safe preservatives, they also cause some harm to human health, which has been discussed lately. Therefore, the aim of this study was to evaluate the occurrence of nine parabens (including isomers) in mineral and drinking waters, besides in drinking water treatment sludge (DWTS) samples with determination by liquid chromatography tandem mass spectrometry (LC-MS/MS). Both methods solid phase extraction (SPE) and QuEChERS were validated. Calibration curves showed a correlation coefficient of 0.99 for all compounds. LOQ values ranged from 0.04 to 4 μg L−1 in aqueous matrices and from 5 to 500 ng g−1 in DWTS. Recoveries between 70 and 115% were reached with RSD below 20% for all compounds in SPE whereas recoveries between 62 and 119% were found with RSD below 20% for almost all compounds in QuEChERS. Matrix effect had low values (< 20%); it was only above 20% for methylparaben in the SPE and for pentylparaben in the QuEChERS. Using a quick and simple extraction procedures with SPE, QuEChERS, and LC-MS/MS analyses, these methods proved to be selective and sensitive. They were successfully applied to real samples (treated water, mineral water, and sludge), and methylparaben was detected at concentration levels below 0.242 μg L−1 in mineral and treated water samples and 10 ng g−1 in DWTS samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Trace analysis of parabens preservatives in drinking water treatment sludge, treated, and mineral water samples

Loading next page...
 
/lp/springer_journal/trace-analysis-of-parabens-preservatives-in-drinking-water-treatment-X0xu0O097Q
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1583-4
Publisher site
See Article on Publisher Site

Abstract

Parabens have been widely used as antimicrobial agents, mainly in food products, pharmaceuticals, and cosmetics. Although they are known as safe preservatives, they also cause some harm to human health, which has been discussed lately. Therefore, the aim of this study was to evaluate the occurrence of nine parabens (including isomers) in mineral and drinking waters, besides in drinking water treatment sludge (DWTS) samples with determination by liquid chromatography tandem mass spectrometry (LC-MS/MS). Both methods solid phase extraction (SPE) and QuEChERS were validated. Calibration curves showed a correlation coefficient of 0.99 for all compounds. LOQ values ranged from 0.04 to 4 μg L−1 in aqueous matrices and from 5 to 500 ng g−1 in DWTS. Recoveries between 70 and 115% were reached with RSD below 20% for all compounds in SPE whereas recoveries between 62 and 119% were found with RSD below 20% for almost all compounds in QuEChERS. Matrix effect had low values (< 20%); it was only above 20% for methylparaben in the SPE and for pentylparaben in the QuEChERS. Using a quick and simple extraction procedures with SPE, QuEChERS, and LC-MS/MS analyses, these methods proved to be selective and sensitive. They were successfully applied to real samples (treated water, mineral water, and sludge), and methylparaben was detected at concentration levels below 0.242 μg L−1 in mineral and treated water samples and 10 ng g−1 in DWTS samples.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off