Toxic effect and mechanism of four ionic liquids on seedling taproots of Arabidopsis thaliana

Toxic effect and mechanism of four ionic liquids on seedling taproots of Arabidopsis thaliana Arabidopsis thaliana was selected as model organisms to investigate the toxic effect and mechanism of four kinds of imidazolium and pyridinium ionic liquids (ILs) on plant seedling taproots. After exposure to ILs, the growth of seedling taproots was significantly inhibited in a dose-dependent manner. The toxicity of ILs on seedling taproots was [Bmim][BF4] > [Bmpy][BF4] > [Bmim][Br] > [Bmpy][Br]. The reduction of seedling root cell vitality, aggravation of seedling root cell death, and repression of gravitropic growth responses were observed. The amounts of H2O2 and ROS in seedlings were enhanced with increasing concentrations of ILs. Moreover, the expression levels of cdc2a and pcna1 genes were decreased after exposure to ILs. Our results suggest that ILs can induce the overproduction of ROS in A. thaliana seedling taproots and thus cause oxidative damage to seedling taproots. Meanwhile, ILs alter the expression patterns of two cell cycle-related genes and hence cause the seedling taproot growth inhibition. This work provides an integrated understanding of the toxic effect and mechanism of ILs on A. thaliana seedlings at the molecular and physiological level and also provides theoretical basis and reference for the environmental safety evaluation of ILs, prior to their widespread use and release. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Toxic effect and mechanism of four ionic liquids on seedling taproots of Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/toxic-effect-and-mechanism-of-four-ionic-liquids-on-seedling-taproots-AK5de046dk
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1621-2
Publisher site
See Article on Publisher Site

Abstract

Arabidopsis thaliana was selected as model organisms to investigate the toxic effect and mechanism of four kinds of imidazolium and pyridinium ionic liquids (ILs) on plant seedling taproots. After exposure to ILs, the growth of seedling taproots was significantly inhibited in a dose-dependent manner. The toxicity of ILs on seedling taproots was [Bmim][BF4] > [Bmpy][BF4] > [Bmim][Br] > [Bmpy][Br]. The reduction of seedling root cell vitality, aggravation of seedling root cell death, and repression of gravitropic growth responses were observed. The amounts of H2O2 and ROS in seedlings were enhanced with increasing concentrations of ILs. Moreover, the expression levels of cdc2a and pcna1 genes were decreased after exposure to ILs. Our results suggest that ILs can induce the overproduction of ROS in A. thaliana seedling taproots and thus cause oxidative damage to seedling taproots. Meanwhile, ILs alter the expression patterns of two cell cycle-related genes and hence cause the seedling taproot growth inhibition. This work provides an integrated understanding of the toxic effect and mechanism of ILs on A. thaliana seedlings at the molecular and physiological level and also provides theoretical basis and reference for the environmental safety evaluation of ILs, prior to their widespread use and release.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off