# Towards Optimal Use of Multi-Precision Arithmetic: A Remark

Towards Optimal Use of Multi-Precision Arithmetic: A Remark If standard-precision computations do not lead to the desired accuracy, then it is reasonable to increase precision until we reach this accuracy. What is the optimal way of increasing precision? One possibility is to choose a constant q > 1, so that if the precision which requires the time t did not lead to a success, we select the next precision that requires time q ˙ t˙ It was shown that among such strategies, the optimal (worst-case) overhead is attained when q = 2. In this paper, we show that this “time-doubling” strategy is optimal among all possible strategies, not only among the ones in which we always increase time by a constant q > 1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

# Towards Optimal Use of Multi-Precision Arithmetic: A Remark

, Volume 12 (5) – Jul 29, 2006
5 pages

/lp/springer_journal/towards-optimal-use-of-multi-precision-arithmetic-a-remark-WhOCX6CH5m
Publisher
Springer Netherlands
Subject
Mathematics; Numeric Computing; Mathematical Modeling and Industrial Mathematics; Approximations and Expansions; Computational Mathematics and Numerical Analysis
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1007/s11155-006-9007-4
Publisher site
See Article on Publisher Site

### Abstract

If standard-precision computations do not lead to the desired accuracy, then it is reasonable to increase precision until we reach this accuracy. What is the optimal way of increasing precision? One possibility is to choose a constant q > 1, so that if the precision which requires the time t did not lead to a success, we select the next precision that requires time q ˙ t˙ It was shown that among such strategies, the optimal (worst-case) overhead is attained when q = 2. In this paper, we show that this “time-doubling” strategy is optimal among all possible strategies, not only among the ones in which we always increase time by a constant q > 1.

### Journal

Reliable ComputingSpringer Journals

Published: Jul 29, 2006

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations