Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish

Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in... Avoiding predation is generally seen as the most common explanation for why animals aggregate. However, it remains questionable whether the existing theory provides a complete explanation of the functions of large shoals formation in marine fishes. Here, we consider how well the mechanisms commonly proposed to explain enhanced safety of group living prey explain fish shoals reaching very large sizes. By conceptually re-examining these mechanisms for large marine shoals, we find little support from either empirical studies or classical models. We address first the importance of reassessing the functional theory with predator-dependent models and the need to consider factors other than predation to explain massive fish shoals. Second, we argue that taking into account the interplay between ultimate benefits and proximate perspectives is a key step in understanding large fish shoals in marine ecosystems. Third, we present the growing body of evidence from field studies that identify shoal internal structure as an important feature for how large shoals can form, maintain and react as a coordinated unit to external stimuli. In particular, we consider a mechanistic basis of local rules of interaction for group formation and collective dynamic properties that can account for groups reaching very large sizes. Recent research in collective animal behaviour has shifted focus from the importance of global properties (group size) to local properties (local density and information transfer). In contrast to studies of fish shoals in the laboratory, the difficulty in measuring behaviour in large shoals in marine systems remains a major constraint to further work. Advances in acoustical observation have shown the greatest potential to provide data that can link proximate mechanisms in, and ultimate functions of, large marine fish shoals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish

Loading next page...
 
/lp/springer_journal/towards-of-a-firmer-explanation-of-large-shoal-formation-maintenance-nTL9tmIdqt
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer International Publishing Switzerland
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-014-9367-5
Publisher site
See Article on Publisher Site

Abstract

Avoiding predation is generally seen as the most common explanation for why animals aggregate. However, it remains questionable whether the existing theory provides a complete explanation of the functions of large shoals formation in marine fishes. Here, we consider how well the mechanisms commonly proposed to explain enhanced safety of group living prey explain fish shoals reaching very large sizes. By conceptually re-examining these mechanisms for large marine shoals, we find little support from either empirical studies or classical models. We address first the importance of reassessing the functional theory with predator-dependent models and the need to consider factors other than predation to explain massive fish shoals. Second, we argue that taking into account the interplay between ultimate benefits and proximate perspectives is a key step in understanding large fish shoals in marine ecosystems. Third, we present the growing body of evidence from field studies that identify shoal internal structure as an important feature for how large shoals can form, maintain and react as a coordinated unit to external stimuli. In particular, we consider a mechanistic basis of local rules of interaction for group formation and collective dynamic properties that can account for groups reaching very large sizes. Recent research in collective animal behaviour has shifted focus from the importance of global properties (group size) to local properties (local density and information transfer). In contrast to studies of fish shoals in the laboratory, the difficulty in measuring behaviour in large shoals in marine systems remains a major constraint to further work. Advances in acoustical observation have shown the greatest potential to provide data that can link proximate mechanisms in, and ultimate functions of, large marine fish shoals.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Aug 13, 2014

References

  • Empirical investigation of starling flocks: a benchmark study in collective animal behaviour
    Ballerini, M; Cabibbo, N; Candelier, R; Cavagna, A; Cisbani, E; Giardina, I; Orlandi, A; Parisi, G; Procaccini, A; Viale, M; Zdravkovic, V
  • The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spined sticklebacks, Gasterosteus aculeatus
    Barber, I; Huntingford, FA

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off