Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method

Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary... This article proposes an acoustic muffler design procedure based on finite element models and a Bi-directional Evolutionary Acoustic Topology Optimization. The main goal is to find the best configuration of barriers inside acoustic mufflers used in the automotive industry that reduces sound pressure level in the outlet of the muffler. The acoustic medium is governed by Helmholtz equation and rigid wall boundary conditions are introduced to represent acoustic barriers. The continuum problem is written in the frequency domain and it is discretized using the finite element method. The adopted objective function is Transmission Loss (TL). Increasing TL guarantees that the sound pressure level ratio between outlet and inlet of the muffler is reduced. To find the configuration of acoustic barriers that increases the Transmission Loss function of the muffler an adaptation of the Bi-directional Evolutionary Structural Optimization (BESO) method is used. Applying the proposed design procedure topologies in 2D models are reached, which raises the Transmission Loss function for one or multiple frequencies. Three examples are presented to show the efficiency of the proposed procedure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural and Multidisciplinary Optimization Springer Journals

Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method

Loading next page...
 
/lp/springer_journal/topology-optimization-of-reactive-acoustic-mufflers-using-a-bi-BmdsDDEp60
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Theoretical and Applied Mechanics; Computational Mathematics and Numerical Analysis; Engineering Design
ISSN
1615-147X
eISSN
1615-1488
D.O.I.
10.1007/s00158-018-2012-5
Publisher site
See Article on Publisher Site

Abstract

This article proposes an acoustic muffler design procedure based on finite element models and a Bi-directional Evolutionary Acoustic Topology Optimization. The main goal is to find the best configuration of barriers inside acoustic mufflers used in the automotive industry that reduces sound pressure level in the outlet of the muffler. The acoustic medium is governed by Helmholtz equation and rigid wall boundary conditions are introduced to represent acoustic barriers. The continuum problem is written in the frequency domain and it is discretized using the finite element method. The adopted objective function is Transmission Loss (TL). Increasing TL guarantees that the sound pressure level ratio between outlet and inlet of the muffler is reduced. To find the configuration of acoustic barriers that increases the Transmission Loss function of the muffler an adaptation of the Bi-directional Evolutionary Structural Optimization (BESO) method is used. Applying the proposed design procedure topologies in 2D models are reached, which raises the Transmission Loss function for one or multiple frequencies. Three examples are presented to show the efficiency of the proposed procedure.

Journal

Structural and Multidisciplinary OptimizationSpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off