Access the full text.
Sign up today, get DeepDyve free for 14 days.
The aim of this paper is to study the topology optimization for mechanical systems with hybrid material and geometric uncertainties. The random variations are modeled by a memory-less transformation of random fields which ensures their physical admissibility. The stochastic collocation method combined with the proposed material and geometry uncertainty models provides robust designs by utilizing already developed deterministic solvers. The computational cost is decreased by using of sparse grids and discretization refinement that are proposed and demonstrated as well. The method is utilized in the design of minimum compliance structure. The proposed algorithm provides a computationally cheap alternative to previously introduced stochastic optimization methods based on Monte Carlo sampling by using adaptive sparse grids method.
Structural and Multidisciplinary Optimization – Springer Journals
Published: Dec 4, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.