Topology based placement of multicast capable nodes for supporting efficient multicast communication in WDM optical networks

Topology based placement of multicast capable nodes for supporting efficient multicast... Most existing algorithms for the problem of optical signal splitter placement or multicast splitting-capable node placement in a WDM network are based on the performance of attempting a large set of randomly generated multicast sessions in the network. Experiments show that placement of multicast capable nodes based on their importance for routing one set of multicast sessions may not be a right choice for another set of multicast sessions. In this work, we propose placement algorithms that are based on network topology and the relative importance of a node in routing multicast sessions, which is measured by our proposed metrics. Since a network topology is fixed once given, the proposed algorithms are essentially network traffic independent. We evaluate the proposed placement algorithms given static sets of multicast sessions as well as under dynamic traffic conditions, which are routed using our splitter constrained multicast routing algorithm. Our results show that the proposed algorithms perform better, compared to existing algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Topology based placement of multicast capable nodes for supporting efficient multicast communication in WDM optical networks

Loading next page...
 
/lp/springer_journal/topology-based-placement-of-multicast-capable-nodes-for-supporting-IiiQ8OQ9Ja
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-006-0043-0
Publisher site
See Article on Publisher Site

Abstract

Most existing algorithms for the problem of optical signal splitter placement or multicast splitting-capable node placement in a WDM network are based on the performance of attempting a large set of randomly generated multicast sessions in the network. Experiments show that placement of multicast capable nodes based on their importance for routing one set of multicast sessions may not be a right choice for another set of multicast sessions. In this work, we propose placement algorithms that are based on network topology and the relative importance of a node in routing multicast sessions, which is measured by our proposed metrics. Since a network topology is fixed once given, the proposed algorithms are essentially network traffic independent. We evaluate the proposed placement algorithms given static sets of multicast sessions as well as under dynamic traffic conditions, which are routed using our splitter constrained multicast routing algorithm. Our results show that the proposed algorithms perform better, compared to existing algorithms.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 5, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off