Topology aggregation and decoding algorithms based on a minimum spanning tree in asymmetric multi-domain optical networks

Topology aggregation and decoding algorithms based on a minimum spanning tree in asymmetric... In an optical network, the connections are generally bidirectional, but their QoS parameters in each direction may be not the same. In this paper, we propose an enhanced algorithm called Node Label Order First (NLOF), which can maintain asymmetrical information and guarantee availability of the compressed topology. Besides, a decoding algorithm to restore the compressed topology named Average Proportional point (AP) is also proposed, which not only retains the space complexity of the aggregation process but also improves the accuracy of the restored information. Simulation results show that combing NLOF with AP can balance the contradiction between space complexity of the aggregation algorithm and routing accuracy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Topology aggregation and decoding algorithms based on a minimum spanning tree in asymmetric multi-domain optical networks

Loading next page...
 
/lp/springer_journal/topology-aggregation-and-decoding-algorithms-based-on-a-minimum-Vzo7r0uiLP
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0276-9
Publisher site
See Article on Publisher Site

Abstract

In an optical network, the connections are generally bidirectional, but their QoS parameters in each direction may be not the same. In this paper, we propose an enhanced algorithm called Node Label Order First (NLOF), which can maintain asymmetrical information and guarantee availability of the compressed topology. Besides, a decoding algorithm to restore the compressed topology named Average Proportional point (AP) is also proposed, which not only retains the space complexity of the aggregation process but also improves the accuracy of the restored information. Simulation results show that combing NLOF with AP can balance the contradiction between space complexity of the aggregation algorithm and routing accuracy.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 7, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off