Topical Review: Optimum Probe Parameters for Entangling Probe in Quantum Key Distribution

Topical Review: Optimum Probe Parameters for Entangling Probe in Quantum Key Distribution For the four-state protocol of quantum key distribution, optimum sets of probe parameters are calculated for the most general unitary probe in which each individual transmitted photon is made to interact with the probe so that the signal and the probe are left in an entangled state, and projective measurement by the probe, made subsequent to projective measurement by the legitimate receiver, yields information about the signal state. The probe optimization is based on maximizing the Renyi information gain by the probe on corrected data for a given error rate induced by the probe in the legitimate receiver. An arbitrary angle is included between the nonorthogonal linear polarization states of the signal photons. Two sets of optimum probe parameters are determined which both correspond to the same optimization. Also, a larger set of optimum probe parameters is found than was known previously for the standard BB84 protocol. A detailed comparison is made between the complete and incomplete optimizations, and the latter simpler optimization is also made complete. Also, the process of key distillation from the quantum transmission in quantum key distribution is reviewed, with the objective of calculating the secrecy capacity of the four-state protocol in the presence of the eavesdropping probe. Emphasis is placed on information leakage to the probe. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Topical Review: Optimum Probe Parameters for Entangling Probe in Quantum Key Distribution

Loading next page...
 
/lp/springer_journal/topical-review-optimum-probe-parameters-for-entangling-probe-in-nKdrUyXKE6
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by Plenum Publishing Corporation
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/A:1025802616066
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial