Top-K structural diversity search in large networks

Top-K structural diversity search in large networks Social contagion depicts a process of information (e.g., fads, opinions, news) diffusion in the online social networks. A recent study reports that in a social contagion process, the probability of contagion is tightly controlled by the number of connected components in an individual’s neighborhood. Such a number is termed structural diversity of an individual, and it is shown to be a key predictor in the social contagion process. Based on this, a fundamental issue in a social network is to find top- $$k$$ k users with the highest structural diversities. In this paper, we, for the first time, study the top- $$k$$ k structural diversity search problem in a large network. Specifically, we study two types of structural diversity measures, namely, component-based structural diversity measure and core-based structural diversity measure. For component-based structural diversity, we develop an effective upper bound of structural diversity for pruning the search space. The upper bound can be incrementally refined in the search process. Based on such upper bound, we propose an efficient framework for top- $$k$$ k structural diversity search. To further speed up the structural diversity evaluation in the search process, several carefully devised search strategies are proposed. We also design efficient techniques to handle frequent updates in dynamic networks and maintain the top- $$k$$ k results. We further show how the techniques proposed in component-based structural diversity measure can be extended to handle the core-based structural diversity measure. Extensive experimental studies are conducted in real-world large networks and synthetic graphs, and the results demonstrate the efficiency and effectiveness of the proposed methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Top-K structural diversity search in large networks

Loading next page...
 
/lp/springer_journal/top-k-structural-diversity-search-in-large-networks-BginOsrSnB
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0379-0
Publisher site
See Article on Publisher Site

Abstract

Social contagion depicts a process of information (e.g., fads, opinions, news) diffusion in the online social networks. A recent study reports that in a social contagion process, the probability of contagion is tightly controlled by the number of connected components in an individual’s neighborhood. Such a number is termed structural diversity of an individual, and it is shown to be a key predictor in the social contagion process. Based on this, a fundamental issue in a social network is to find top- $$k$$ k users with the highest structural diversities. In this paper, we, for the first time, study the top- $$k$$ k structural diversity search problem in a large network. Specifically, we study two types of structural diversity measures, namely, component-based structural diversity measure and core-based structural diversity measure. For component-based structural diversity, we develop an effective upper bound of structural diversity for pruning the search space. The upper bound can be incrementally refined in the search process. Based on such upper bound, we propose an efficient framework for top- $$k$$ k structural diversity search. To further speed up the structural diversity evaluation in the search process, several carefully devised search strategies are proposed. We also design efficient techniques to handle frequent updates in dynamic networks and maintain the top- $$k$$ k results. We further show how the techniques proposed in component-based structural diversity measure can be extended to handle the core-based structural diversity measure. Extensive experimental studies are conducted in real-world large networks and synthetic graphs, and the results demonstrate the efficiency and effectiveness of the proposed methods.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off