Top-k spatial-keyword publish/subscribe over sliding window

Top-k spatial-keyword publish/subscribe over sliding window With the prevalence of social media and GPS-enabled devices, a massive amount of geo-textual data have been generated in a stream fashion, leading to a variety of applications such as location-based recommendation and information dissemination. In this paper, we investigate a novel real-time top- $$k$$ k monitoring problem over sliding window of streaming data; that is, we continuously maintain the top-k most relevant geo-textual messages (e.g., geo-tagged tweets) for a large number of spatial-keyword subscriptions (e.g., registered users interested in local events) simultaneously. To provide the most recent information under controllable memory cost, sliding window model is employed on the streaming geo-textual data. To the best of our knowledge, this is the first work to study top- $$k$$ k spatial-keyword publish/subscribe over sliding window. A novel centralized system, called Skype (Top-k Spatial-keyword Publish/Subscribe), is proposed in this paper. In Skype, to continuously maintain top- $$k$$ k results for massive subscriptions, we devise a novel indexing structure upon subscriptions such that each incoming message can be immediately delivered on its arrival. To reduce the expensive top- $$k$$ k re-evaluation cost triggered by message expiration, we develop a novel cost-based k -skyband technique to reduce the number of re-evaluations in a cost-effective way. Extensive experiments verify the great efficiency and effectiveness of our proposed techniques. Furthermore, to support better scalability and higher throughput, we propose a distributed version of Skype, namely DSkype, on top of Storm, which is a popular distributed stream processing system. With the help of fine-tuned subscription/message distribution mechanisms, DSkype can achieve orders of magnitude speed-up than its centralized version. The VLDB Journal Springer Journals

Top-k spatial-keyword publish/subscribe over sliding window

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial