Top-k queries over web applications

Top-k queries over web applications The core logic of web applications that suggest some particular service, such as online shopping, e-commerce etc., is typically captured by Business Processes (BPs). Among all the (maybe infinitely many) possible execution flows of a BP, analysts are often interested in identifying flows that are “most important”, according to some weight metric. The goal of the present paper is to provide efficient algorithms for top-k query evaluation over the possible executions of Business Processes, under some given weight function. Unique difficulties in top-k analysis in this settings stem from (1) the fact that the number of possible execution flows of a given BP is typically very large, or even infinite in presence of recursion and (2) that the weights (e.g., likelihood, monetary cost, etc.) induced by actions performed during the execution (e.g., product purchase) may be inter-dependent (due to probabilistic dependencies, combined discount deals etc.). We exemplify these difficulties, and overcome them to provide efficient algorithms for query evaluation where possible. We also describe in details an application prototype that we have developed for recommending optimal navigation in an online shopping web site that is based on our model and algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Top-k queries over web applications

Loading next page...
 
/lp/springer_journal/top-k-queries-over-web-applications-B4SazWiKf8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0303-9
Publisher site
See Article on Publisher Site

Abstract

The core logic of web applications that suggest some particular service, such as online shopping, e-commerce etc., is typically captured by Business Processes (BPs). Among all the (maybe infinitely many) possible execution flows of a BP, analysts are often interested in identifying flows that are “most important”, according to some weight metric. The goal of the present paper is to provide efficient algorithms for top-k query evaluation over the possible executions of Business Processes, under some given weight function. Unique difficulties in top-k analysis in this settings stem from (1) the fact that the number of possible execution flows of a given BP is typically very large, or even infinite in presence of recursion and (2) that the weights (e.g., likelihood, monetary cost, etc.) induced by actions performed during the execution (e.g., product purchase) may be inter-dependent (due to probabilistic dependencies, combined discount deals etc.). We exemplify these difficulties, and overcome them to provide efficient algorithms for query evaluation where possible. We also describe in details an application prototype that we have developed for recommending optimal navigation in an online shopping web site that is based on our model and algorithms.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off