Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Tomographic spatial filter velocimetry for three-dimensional measurement of fluid velocity

Tomographic spatial filter velocimetry for three-dimensional measurement of fluid velocity Spatial filter velocimetry (SFV) is extended to three-dimensional three-component velocimetry by coupling the SFV processing with a tomographic technique, which reconstructs three-dimensional particle distributions from stereoscopic particle images recorded by two cameras. Since time duration of a ghost particle traveling through an interrogation area of SFV is shorter than the transit time of a real tracer particle, a validation method of velocity data based on a particle transit time is used to eliminate ghost particles generated in the particle reconstruction process. Effect of a ghost particle on velocity evaluation is not significant due to the short transit time of a ghost particle. The developed system is applied to a free jet, and an impinging jet discharged from a circular pipe. Three-dimensional distributions of time-averaged velocity vectors of the jets are successfully measured by the developed tomographic spatial filter velocimetry (Tomo-SFV) in spite of using only two cameras. The peak-locking errors, which are apt to occur in particle image velocimetry measurements, do not appear in Tomo-SFV measurements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Tomographic spatial filter velocimetry for three-dimensional measurement of fluid velocity

Loading next page...
 
/lp/springer_journal/tomographic-spatial-filter-velocimetry-for-three-dimensional-dSujQd5gkq

References (18)

Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-013-1597-0
Publisher site
See Article on Publisher Site

Abstract

Spatial filter velocimetry (SFV) is extended to three-dimensional three-component velocimetry by coupling the SFV processing with a tomographic technique, which reconstructs three-dimensional particle distributions from stereoscopic particle images recorded by two cameras. Since time duration of a ghost particle traveling through an interrogation area of SFV is shorter than the transit time of a real tracer particle, a validation method of velocity data based on a particle transit time is used to eliminate ghost particles generated in the particle reconstruction process. Effect of a ghost particle on velocity evaluation is not significant due to the short transit time of a ghost particle. The developed system is applied to a free jet, and an impinging jet discharged from a circular pipe. Three-dimensional distributions of time-averaged velocity vectors of the jets are successfully measured by the developed tomographic spatial filter velocimetry (Tomo-SFV) in spite of using only two cameras. The peak-locking errors, which are apt to occur in particle image velocimetry measurements, do not appear in Tomo-SFV measurements.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 14, 2013

There are no references for this article.