Tomographic PIV measurements in a turbulent lifted jet flame

Tomographic PIV measurements in a turbulent lifted jet flame Measurements of instantaneous volumetric flow fields are required for an improved understanding of turbulent flames. In non-reacting flows, tomographic particle image velocimetry (TPIV) is an established method for three-dimensional (3D) flow measurements. In flames, the reconstruction of the particles location becomes challenging due to a locally varying index of refraction causing beam-steering. This work presents TPIV measurements within a turbulent lifted non-premixed methane jet flame. Solid seeding particles were used to provide the 3D flow field in the vicinity of the flame base, including unburned and burned regions. Four cameras were arranged in a horizontal plane around the jet flame. Following an iterative volumetric self-calibration procedure, the remaining disparity caused by the flame was less than 0.2 pixels. Comparisons with conventional two-component PIV in terms of mean and rms values provided additional confidence in the TPIV measurements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Tomographic PIV measurements in a turbulent lifted jet flame

Loading next page...
 
/lp/springer_journal/tomographic-piv-measurements-in-a-turbulent-lifted-jet-flame-srj8JPuJB3
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1624-1
Publisher site
See Article on Publisher Site

Abstract

Measurements of instantaneous volumetric flow fields are required for an improved understanding of turbulent flames. In non-reacting flows, tomographic particle image velocimetry (TPIV) is an established method for three-dimensional (3D) flow measurements. In flames, the reconstruction of the particles location becomes challenging due to a locally varying index of refraction causing beam-steering. This work presents TPIV measurements within a turbulent lifted non-premixed methane jet flame. Solid seeding particles were used to provide the 3D flow field in the vicinity of the flame base, including unburned and burned regions. Four cameras were arranged in a horizontal plane around the jet flame. Following an iterative volumetric self-calibration procedure, the remaining disparity caused by the flame was less than 0.2 pixels. Comparisons with conventional two-component PIV in terms of mean and rms values provided additional confidence in the TPIV measurements.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 29, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off