Tomato (Solanum lycopersicum) MADS-box transcription factor SlMBP8 regulates drought, salt tolerance and stress-related genes

Tomato (Solanum lycopersicum) MADS-box transcription factor SlMBP8 regulates drought, salt... Adverse environmental conditions, such as drought, high salinity and extreme temperature, severely affect the growth and productivity of crop plants. MADS-box transcription factors have been described to participate in stress responses. In our study, a MADS-box transcription factor gene, SlMBP8, has been cloned from tomato. The expression of SlMBP8 was induced by Methyl-jasmonic acid (MeJA), high salinity, high temperature, wounding and dehydration. Whereas, the transcript of SlMBP8 was down-regulated by Abscisic acid (ABA), 1-aminocyclopropane-1-carboxylic acid (ACC) and Indole-3-acetic acid (IAA). To further elucidate the function of SlMBP8 gene in response to abiotic stress, plants by knockdown of SlMBP8 through RNA interference (RNAi) were used for investigating the effect of drought and salt stresses on tomato seedlings of wild type (WT) and SlMBP8-RNAi lines. Seedling growth of SlMBP8-RNAi plants was less inhibited by salt than WT at post-germination stage. Transgenic plants became more tolerant to drought and salt stress than WT plants in soil, which was demonstrated by higher levels of chlorophyll and water contents, lower water loss rate and malondialdehyde (MDA) contents. In addition, the expression of multiple stresses related genes were significantly up-regulated in the RNAi lines under control and abiotic stresses. Taken together, these results suggest that SlMBP8 function as a negative stress-responsive transcription factor in the drought and high salinity stress signaling pathways, and may have promising applications in the engineering of drought- and salt-tolerant tomato. Plant Growth Regulation Springer Journals

Tomato (Solanum lycopersicum) MADS-box transcription factor SlMBP8 regulates drought, salt tolerance and stress-related genes

Loading next page...
Springer Netherlands
Copyright © 2017 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Plant Anatomy/Development; Plant Physiology; Agriculture
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial