Tomato leaf curl virus from Bangalore (ToLCV-Ban4): sequence comparison with Indian ToLCV isolates, detection in plants and insects, and vector relationships}

Tomato leaf curl virus from Bangalore (ToLCV-Ban4): sequence comparison with Indian ToLCV... Tomato leaf curl virus (ToLCV) is a whitefly ( Bemisia tabaci ) transmitted geminivirus (family Geminiviridae , genus Begomovirus ) causing a destructive disease of tomato in many regions of India, East Asia and Australia. While ToLCV isolates from Australia and Taiwan have a single genomic component (designated DNA-A), those from Northern India have two components (DNA-A and DNA-B). The ToLCV isolates from Southern India (Bangalore) previously cloned seem to have a DNA-A-like monopartite genome. We have used degenerate DNA-A-specific PCR primers to clone the genome of a ToLCV isolate (named ToLCV-Ban4) from field-infected tomato plants growing in Bangalore, India, in 1997. Degenerate DNA-B-specific PCR primers have not allowed to amplify a putative DNA-B from infected tomato, at the time when DNA-B fragments were amplified from plants infected by known bipartite begomoviruses. The full-length 2759 nucleotide-long DNA-A-like viral genome was sequenced. Similarly to other monopartite ToLCV and TYLCV isolates, ToLCV-Ban4 contains six open reading frames, two on the virion strand and four on the complementary strand. Sequence comparisons indicated that ToLCV-Ban4 is similar to the other three isolates from Bangalore previously sequenced, and is closely related to ToLCV-Ban2 (approximately 91\% nucleotide sequence identity). Phylogenetic analysis showed that the ToLCV isolates from Bangalore constitute a group of viruses separated from those of Northern India. ToLCV-Ban4 was detected in tomato and in its whitefly vector Bemisia tabaci by one or by a combination of ELISA, Southern blot hybridization and PCR. Parameters of virus acquisition, retention and transmission by the whitefly vector were investigated in the laboratory. Single whiteflies were able to acquire ToLCV-Ban4 from infected tomato and to transmit the virus to tomato test plants, but five insects were necessary to achieve 100% transmission. Minimum acquisition access and inoculation access periods were 10 min and 20 min, respectively. A latent period of 6 h was required for B. tabaci to efficiently infect tomato test plants. Following a 24 h acquisition access period the insect retained its ability to infect tomato test plants for 12 days, but not for its entire life. In one insect/one plant inoculation tests, female whiteflies were more efficient (∼95%) than males (∼25%) in transmitting the virus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Tomato leaf curl virus from Bangalore (ToLCV-Ban4): sequence comparison with Indian ToLCV isolates, detection in plants and insects, and vector relationships}

Loading next page...
 
/lp/springer_journal/tomato-leaf-curl-virus-from-bangalore-tolcv-ban4-sequence-comparison-SZ5mfhki2m
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050070078
Publisher site
See Article on Publisher Site

Abstract

Tomato leaf curl virus (ToLCV) is a whitefly ( Bemisia tabaci ) transmitted geminivirus (family Geminiviridae , genus Begomovirus ) causing a destructive disease of tomato in many regions of India, East Asia and Australia. While ToLCV isolates from Australia and Taiwan have a single genomic component (designated DNA-A), those from Northern India have two components (DNA-A and DNA-B). The ToLCV isolates from Southern India (Bangalore) previously cloned seem to have a DNA-A-like monopartite genome. We have used degenerate DNA-A-specific PCR primers to clone the genome of a ToLCV isolate (named ToLCV-Ban4) from field-infected tomato plants growing in Bangalore, India, in 1997. Degenerate DNA-B-specific PCR primers have not allowed to amplify a putative DNA-B from infected tomato, at the time when DNA-B fragments were amplified from plants infected by known bipartite begomoviruses. The full-length 2759 nucleotide-long DNA-A-like viral genome was sequenced. Similarly to other monopartite ToLCV and TYLCV isolates, ToLCV-Ban4 contains six open reading frames, two on the virion strand and four on the complementary strand. Sequence comparisons indicated that ToLCV-Ban4 is similar to the other three isolates from Bangalore previously sequenced, and is closely related to ToLCV-Ban2 (approximately 91\% nucleotide sequence identity). Phylogenetic analysis showed that the ToLCV isolates from Bangalore constitute a group of viruses separated from those of Northern India. ToLCV-Ban4 was detected in tomato and in its whitefly vector Bemisia tabaci by one or by a combination of ELISA, Southern blot hybridization and PCR. Parameters of virus acquisition, retention and transmission by the whitefly vector were investigated in the laboratory. Single whiteflies were able to acquire ToLCV-Ban4 from infected tomato and to transmit the virus to tomato test plants, but five insects were necessary to achieve 100% transmission. Minimum acquisition access and inoculation access periods were 10 min and 20 min, respectively. A latent period of 6 h was required for B. tabaci to efficiently infect tomato test plants. Following a 24 h acquisition access period the insect retained its ability to infect tomato test plants for 12 days, but not for its entire life. In one insect/one plant inoculation tests, female whiteflies were more efficient (∼95%) than males (∼25%) in transmitting the virus.

Journal

Archives of VirologySpringer Journals

Published: Aug 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off