Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN

Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor... The tomato MADS-box transcription factor RIN acts as a master regulator of fruit ripening. Here, we identified MADS-box proteins that interact with RIN; we also provide evidence that these proteins act in the regulation of fruit ripening. We conducted a yeast two-hybrid screen of a cDNA library from ripening fruit, for genes encoding proteins that bind to RIN. The screen identified two MADS-box genes, FUL1 and FUL2 (previously called TDR4 and SlMBP7), both of which have high sequence similarity to Arabidopsis FRUITFULL. Expression analyses revealed that the FUL1 mRNA and FUL1 protein accumulate in a ripening-specific manner in tomato fruits and FUL2 mRNA and protein accumulate at the pre-ripening stage and throughout ripening. Biochemical analyses confirmed that FUL1 and FUL2 form heterodimers with RIN; this interaction required the FUL1 and FUL2 C-terminal domains. Also, the heterodimers bind to a typical target DNA motif for MADS-box proteins. Chromatin immunoprecipitation assays revealed that FUL1 and FUL2 bind to genomic sites that were previously identified as RIN-target sites, such as the promoter regions of ACS2, ACS4 and RIN. These findings suggest that RIN forms complexes with FUL1 and FUL2 and these complexes regulate expression of ripening-related genes. In addition to the functional redundancy between FUL1 and FUL2, we also found they have potentially divergent roles in transcriptional regulation, including a difference in genomic target sites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN

Loading next page...
 
/lp/springer_journal/tomato-fruitfull-homologues-act-in-fruit-ripening-via-forming-mads-box-ngJ4InCrNb
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0071-y
Publisher site
See Article on Publisher Site

Abstract

The tomato MADS-box transcription factor RIN acts as a master regulator of fruit ripening. Here, we identified MADS-box proteins that interact with RIN; we also provide evidence that these proteins act in the regulation of fruit ripening. We conducted a yeast two-hybrid screen of a cDNA library from ripening fruit, for genes encoding proteins that bind to RIN. The screen identified two MADS-box genes, FUL1 and FUL2 (previously called TDR4 and SlMBP7), both of which have high sequence similarity to Arabidopsis FRUITFULL. Expression analyses revealed that the FUL1 mRNA and FUL1 protein accumulate in a ripening-specific manner in tomato fruits and FUL2 mRNA and protein accumulate at the pre-ripening stage and throughout ripening. Biochemical analyses confirmed that FUL1 and FUL2 form heterodimers with RIN; this interaction required the FUL1 and FUL2 C-terminal domains. Also, the heterodimers bind to a typical target DNA motif for MADS-box proteins. Chromatin immunoprecipitation assays revealed that FUL1 and FUL2 bind to genomic sites that were previously identified as RIN-target sites, such as the promoter regions of ACS2, ACS4 and RIN. These findings suggest that RIN forms complexes with FUL1 and FUL2 and these complexes regulate expression of ripening-related genes. In addition to the functional redundancy between FUL1 and FUL2, we also found they have potentially divergent roles in transcriptional regulation, including a difference in genomic target sites.

Journal

Plant Molecular BiologySpringer Journals

Published: May 16, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off