Tolerance and potential for bioaccumulation of Alternanthera tenella Colla to cadmium under in vitro conditions

Tolerance and potential for bioaccumulation of Alternanthera tenella Colla to cadmium under in... High concentrations of cadmium (Cd) in the environment can threaten the local biota and one of its main sources is anthropic activities such as zinc (Zn) mining. Some plant species are able to tolerate high Cd concentrations, using anatomical and physiological strategies to avoid the absorption or accumulation of this element in their biomass. The in vitro assessment of these strategies is an efficient way to control variables external to the experiment. We aimed to investigate the anatomical and physiological changes in Alternanthera tenella exposed to Cd and its potential for accumulation in controlled microenvironmental conditions. We evaluated changes in the leaf and root anatomy, antioxidant system, and biomass of A. tenella grown in a culture medium containing increasing Cd concentrations (0, 50, 100, and 150 μM), in the presence of 1500 μM Zn. Alternanthera tenella was able to accumulate Cd and Zn and these elements competed for absorption by the species. Increase in Cd in the medium led to a progressive thickening of the root tissues, which was also observed on the leaves, albeit only at concentrations below 100 μM Cd. The concentration of 150 μM Cd was toxic to the leaf tissue and stimulated the formation of hydrogen peroxide, interfering with the antioxidant system and reducing plant biomass and the chlorophyll levels. Therefore, in vitro cultivated A. tenella can accumulate Cd and tolerate up to 100 μM Cd by modifying its anatomy and physiology in order to cope with Cd stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell, Tissue and Organ Culture Springer Journals

Tolerance and potential for bioaccumulation of Alternanthera tenella Colla to cadmium under in vitro conditions

Loading next page...
 
/lp/springer_journal/tolerance-and-potential-for-bioaccumulation-of-alternanthera-tenella-wbklwhziCP
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Plant Physiology; Plant Genetics and Genomics; Plant Pathology
ISSN
0167-6857
eISSN
1573-5044
D.O.I.
10.1007/s11240-017-1241-4
Publisher site
See Article on Publisher Site

Abstract

High concentrations of cadmium (Cd) in the environment can threaten the local biota and one of its main sources is anthropic activities such as zinc (Zn) mining. Some plant species are able to tolerate high Cd concentrations, using anatomical and physiological strategies to avoid the absorption or accumulation of this element in their biomass. The in vitro assessment of these strategies is an efficient way to control variables external to the experiment. We aimed to investigate the anatomical and physiological changes in Alternanthera tenella exposed to Cd and its potential for accumulation in controlled microenvironmental conditions. We evaluated changes in the leaf and root anatomy, antioxidant system, and biomass of A. tenella grown in a culture medium containing increasing Cd concentrations (0, 50, 100, and 150 μM), in the presence of 1500 μM Zn. Alternanthera tenella was able to accumulate Cd and Zn and these elements competed for absorption by the species. Increase in Cd in the medium led to a progressive thickening of the root tissues, which was also observed on the leaves, albeit only at concentrations below 100 μM Cd. The concentration of 150 μM Cd was toxic to the leaf tissue and stimulated the formation of hydrogen peroxide, interfering with the antioxidant system and reducing plant biomass and the chlorophyll levels. Therefore, in vitro cultivated A. tenella can accumulate Cd and tolerate up to 100 μM Cd by modifying its anatomy and physiology in order to cope with Cd stress.

Journal

Plant Cell, Tissue and Organ CultureSpringer Journals

Published: Jun 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off