Tolerance and potential for bioaccumulation of Alternanthera tenella Colla to cadmium under in vitro conditions

Tolerance and potential for bioaccumulation of Alternanthera tenella Colla to cadmium under in... High concentrations of cadmium (Cd) in the environment can threaten the local biota and one of its main sources is anthropic activities such as zinc (Zn) mining. Some plant species are able to tolerate high Cd concentrations, using anatomical and physiological strategies to avoid the absorption or accumulation of this element in their biomass. The in vitro assessment of these strategies is an efficient way to control variables external to the experiment. We aimed to investigate the anatomical and physiological changes in Alternanthera tenella exposed to Cd and its potential for accumulation in controlled microenvironmental conditions. We evaluated changes in the leaf and root anatomy, antioxidant system, and biomass of A. tenella grown in a culture medium containing increasing Cd concentrations (0, 50, 100, and 150 μM), in the presence of 1500 μM Zn. Alternanthera tenella was able to accumulate Cd and Zn and these elements competed for absorption by the species. Increase in Cd in the medium led to a progressive thickening of the root tissues, which was also observed on the leaves, albeit only at concentrations below 100 μM Cd. The concentration of 150 μM Cd was toxic to the leaf tissue and stimulated the formation of hydrogen peroxide, interfering with the antioxidant system and reducing plant biomass and the chlorophyll levels. Therefore, in vitro cultivated A. tenella can accumulate Cd and tolerate up to 100 μM Cd by modifying its anatomy and physiology in order to cope with Cd stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell, Tissue and Organ Culture Springer Journals

Tolerance and potential for bioaccumulation of Alternanthera tenella Colla to cadmium under in vitro conditions

Loading next page...
 
/lp/springer_journal/tolerance-and-potential-for-bioaccumulation-of-alternanthera-tenella-wbklwhziCP
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Plant Physiology; Plant Genetics and Genomics; Plant Pathology
ISSN
0167-6857
eISSN
1573-5044
D.O.I.
10.1007/s11240-017-1241-4
Publisher site
See Article on Publisher Site

Abstract

High concentrations of cadmium (Cd) in the environment can threaten the local biota and one of its main sources is anthropic activities such as zinc (Zn) mining. Some plant species are able to tolerate high Cd concentrations, using anatomical and physiological strategies to avoid the absorption or accumulation of this element in their biomass. The in vitro assessment of these strategies is an efficient way to control variables external to the experiment. We aimed to investigate the anatomical and physiological changes in Alternanthera tenella exposed to Cd and its potential for accumulation in controlled microenvironmental conditions. We evaluated changes in the leaf and root anatomy, antioxidant system, and biomass of A. tenella grown in a culture medium containing increasing Cd concentrations (0, 50, 100, and 150 μM), in the presence of 1500 μM Zn. Alternanthera tenella was able to accumulate Cd and Zn and these elements competed for absorption by the species. Increase in Cd in the medium led to a progressive thickening of the root tissues, which was also observed on the leaves, albeit only at concentrations below 100 μM Cd. The concentration of 150 μM Cd was toxic to the leaf tissue and stimulated the formation of hydrogen peroxide, interfering with the antioxidant system and reducing plant biomass and the chlorophyll levels. Therefore, in vitro cultivated A. tenella can accumulate Cd and tolerate up to 100 μM Cd by modifying its anatomy and physiology in order to cope with Cd stress.

Journal

Plant Cell, Tissue and Organ CultureSpringer Journals

Published: Jun 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off