Tissue-specific regulation of BiP genes: a cis-acting regulatory domain is required for BiP promoter activity in plant meristems

Tissue-specific regulation of BiP genes: a cis-acting regulatory domain is required for BiP... The binding protein BiP is an endoplasmic reticulum (ER)-resident member of the HSP70 stress-related protein family, which is essential for the constitutive function of the ER. In addition to responding to a variety of environmental stimuli, plant BiP exhibits a tissue-specific regulation. We have isolated two soybean BiP genomic clones, designated gsBiP6 and gsBiP9, and different extensions of their 5′ flanking sequences were fused to β-glucuronidase (GUS) reporter gene and introduced into Nicotiana tabacum by Agrobacterium tumefaciens-mediated transformation. Transgenic plants displayed prominent GUS activity in the vascular bundles of roots and shoots as well as in regions of intense cell division, such as procambial region and apical meristems. Promoter deletion analyses identified two cis-regulatory functional domains that are important for the spatially-regulated activation of BiP expression under normal plant development. While an AT-rich enhancer-like sequence, designated cis-acting regulatory domain 1, CRD1 (−358 to −211, on gsBiP6), activated expression of the BiP minimal promoter in all organs analyzed, BiP promoter activity in meristematic tissues and phloem cells required the presence of a second activating domain, CRD2 (−211 to −80). Apparently, the CRD2 sequence also harbors negative cis-acting elements, because removal of this region caused activation of gsBiP6 promoter in parenchymatic xylem rays. These results suggest that the tissue-specific control of BiP gene expression requires a complex integration of multiple cis-acting regulatory elements on the promoter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Tissue-specific regulation of BiP genes: a cis-acting regulatory domain is required for BiP promoter activity in plant meristems

Loading next page...
 
/lp/springer_journal/tissue-specific-regulation-of-bip-genes-a-cis-acting-regulatory-domain-v8b0hPnjC0
Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1019994721545
Publisher site
See Article on Publisher Site

Abstract

The binding protein BiP is an endoplasmic reticulum (ER)-resident member of the HSP70 stress-related protein family, which is essential for the constitutive function of the ER. In addition to responding to a variety of environmental stimuli, plant BiP exhibits a tissue-specific regulation. We have isolated two soybean BiP genomic clones, designated gsBiP6 and gsBiP9, and different extensions of their 5′ flanking sequences were fused to β-glucuronidase (GUS) reporter gene and introduced into Nicotiana tabacum by Agrobacterium tumefaciens-mediated transformation. Transgenic plants displayed prominent GUS activity in the vascular bundles of roots and shoots as well as in regions of intense cell division, such as procambial region and apical meristems. Promoter deletion analyses identified two cis-regulatory functional domains that are important for the spatially-regulated activation of BiP expression under normal plant development. While an AT-rich enhancer-like sequence, designated cis-acting regulatory domain 1, CRD1 (−358 to −211, on gsBiP6), activated expression of the BiP minimal promoter in all organs analyzed, BiP promoter activity in meristematic tissues and phloem cells required the presence of a second activating domain, CRD2 (−211 to −80). Apparently, the CRD2 sequence also harbors negative cis-acting elements, because removal of this region caused activation of gsBiP6 promoter in parenchymatic xylem rays. These results suggest that the tissue-specific control of BiP gene expression requires a complex integration of multiple cis-acting regulatory elements on the promoter.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off