Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Tissue-specific expression and functional complementation of a yeastpotassium-uptake mutant by a salt-induced ice plant gene mcSKD1

Tissue-specific expression and functional complementation of a yeastpotassium-uptake mutant by a... A full-length salt-induced transcript homologous to SKD1 (suppressor of K+ transport growth defect) of the AAA (ATPase associated with a variety of cellular activities)-type ATPase family has been identified from the halophyte Mesembryanthemum crystallinum (ice plant). The expression of mcSKD1 was induced by 200 mM NaCl or higher in cultured ice plant cells. When cultured ice plant cells were grown in a high K+ (42.6 mM) medium, the level of mcSKD1 expression decreased. At the whole plant level, constitutive expression of mcSKD1 was observed in roots, stems, leaves and floral organs. Addition of 400 mM NaCl increased the transcript level in roots and stems. The expression of atSKD1, a homologue gene in Arabidopsis, was down regulated by salt stress. Under salt stress, mcSKD1 was preferentially expressed in the outer cortex of roots and stems and in the epidermal bladder cells of leaves. The mcSKD1 transcript was constitutively expressed in placenta and integuments of the developing floral buds. Expression of the full-length or C-terminal deletion of mcSKD1 was able to complement the K+ uptake-defect phenotype in mutant Saccharomyces cerevisiae, which is defective in high- and low-affinity K+ uptake. Deletion of the N-terminal coiled-coil motif of mcSKD1, a structure required for membrane association, resulted in greatly reduced K+ transport. Expression of mcSKD1 also increased the salt-tolerant ability of yeast mutants and either N- or C-terminal deletion decreased the efficiency. The physiological relevancies of mcSKD1 for K+ uptake under high salinity environments are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Tissue-specific expression and functional complementation of a yeastpotassium-uptake mutant by a salt-induced ice plant gene mcSKD1

Loading next page...
 
/lp/springer_journal/tissue-specific-expression-and-functional-complementation-of-a-7WUK02jn9G

References (55)

Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-004-0335-7
pmid
15604658
Publisher site
See Article on Publisher Site

Abstract

A full-length salt-induced transcript homologous to SKD1 (suppressor of K+ transport growth defect) of the AAA (ATPase associated with a variety of cellular activities)-type ATPase family has been identified from the halophyte Mesembryanthemum crystallinum (ice plant). The expression of mcSKD1 was induced by 200 mM NaCl or higher in cultured ice plant cells. When cultured ice plant cells were grown in a high K+ (42.6 mM) medium, the level of mcSKD1 expression decreased. At the whole plant level, constitutive expression of mcSKD1 was observed in roots, stems, leaves and floral organs. Addition of 400 mM NaCl increased the transcript level in roots and stems. The expression of atSKD1, a homologue gene in Arabidopsis, was down regulated by salt stress. Under salt stress, mcSKD1 was preferentially expressed in the outer cortex of roots and stems and in the epidermal bladder cells of leaves. The mcSKD1 transcript was constitutively expressed in placenta and integuments of the developing floral buds. Expression of the full-length or C-terminal deletion of mcSKD1 was able to complement the K+ uptake-defect phenotype in mutant Saccharomyces cerevisiae, which is defective in high- and low-affinity K+ uptake. Deletion of the N-terminal coiled-coil motif of mcSKD1, a structure required for membrane association, resulted in greatly reduced K+ transport. Expression of mcSKD1 also increased the salt-tolerant ability of yeast mutants and either N- or C-terminal deletion decreased the efficiency. The physiological relevancies of mcSKD1 for K+ uptake under high salinity environments are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

There are no references for this article.