Tissue-Specific Expression and Drought Responsiveness of Cell-Wall Invertase Genes of Rice at Flowering

Tissue-Specific Expression and Drought Responsiveness of Cell-Wall Invertase Genes of Rice at... Drought stress near heading reduces grain yield in rice cultivars by inhibiting processes such as anther dehiscence and panicle exsertion. Because cell-wall invertases play an important role in carbon allocation to developing organs, we examined the tissue-specific expression and drought sensitivity of the corresponding genes (OsCIN1-9) at heading in the widely grown cultivar IR64. OsCIN1-5,8 were expressed to varying degrees in flag leaf, panicle, anthers and peduncle at 1 day before heading (1 DBH). When water was withheld for 2 days starting 3 DBH, anthesis and peduncle elongation were halted. At the same time, transcript levels for OsCIN1-5,8 genes were all markedly down-regulated in anthers and/or peduncles but were not affected in flag leaves. Re-watering allowed anthesis and peduncle elongation to proceed and restored expression of OsCIN1-5,8. We conclude that cell-wall invertase genes, as a class, respond rapidly to water deficit in anthers and peduncles and through a reduction in sink strength help to coordinate a delay in anthesis and heading. By contrast, vacuolar invertase OsVIN2 was up-regulated by drought stress in flag leaves, panicles, anthers and peduncles. Although OsCIN1-3,5,8 were active in the peduncle, only OsCIN2 was expressed strongly and preferentially at the base, where cell division and cell elongation occur. OsCIN2 was expressed principally in the primary and secondary vascular systems, consistent with a role in diverting sucrose from the phloem to the dividing and expanding cells of the peduncle, whereas the less abundant OsCIN1,3,5,8 transcripts were found principally in parenchyma cells. The OsCIN2 transcript levels in the base were highest at 1 DBH, when rapid peduncle elongation began. Drought stress halted peduncle elongation and reduced OsCIN2 transcript level to 8% of the control level. On re-watering, peduncle elongation was restored and OsCIN2 transcript level recovered to 24% of the control. The abscisic acid (ABA) level of peduncles increased 7-fold on drought stress and returned to the control level on re-watering. Detached peduncles floated on water elongated little and lost all OsCIN2 transcripts, but on 50–100 μM GA3 they elongated rapidly and maintained high OsCIN2 transcript levels. ABA antagonized both peduncle elongation and maintenance of OsCIN2 transcript levels. We conclude that this antagonism is a potential intervention point for breeding strategies directed at enhancing panicle exsertion during or after drought stress at heading. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Tissue-Specific Expression and Drought Responsiveness of Cell-Wall Invertase Genes of Rice at Flowering

Loading next page...
 
/lp/springer_journal/tissue-specific-expression-and-drought-responsiveness-of-cell-wall-zcL72hSpid
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-2415-8
Publisher site
See Article on Publisher Site

Abstract

Drought stress near heading reduces grain yield in rice cultivars by inhibiting processes such as anther dehiscence and panicle exsertion. Because cell-wall invertases play an important role in carbon allocation to developing organs, we examined the tissue-specific expression and drought sensitivity of the corresponding genes (OsCIN1-9) at heading in the widely grown cultivar IR64. OsCIN1-5,8 were expressed to varying degrees in flag leaf, panicle, anthers and peduncle at 1 day before heading (1 DBH). When water was withheld for 2 days starting 3 DBH, anthesis and peduncle elongation were halted. At the same time, transcript levels for OsCIN1-5,8 genes were all markedly down-regulated in anthers and/or peduncles but were not affected in flag leaves. Re-watering allowed anthesis and peduncle elongation to proceed and restored expression of OsCIN1-5,8. We conclude that cell-wall invertase genes, as a class, respond rapidly to water deficit in anthers and peduncles and through a reduction in sink strength help to coordinate a delay in anthesis and heading. By contrast, vacuolar invertase OsVIN2 was up-regulated by drought stress in flag leaves, panicles, anthers and peduncles. Although OsCIN1-3,5,8 were active in the peduncle, only OsCIN2 was expressed strongly and preferentially at the base, where cell division and cell elongation occur. OsCIN2 was expressed principally in the primary and secondary vascular systems, consistent with a role in diverting sucrose from the phloem to the dividing and expanding cells of the peduncle, whereas the less abundant OsCIN1,3,5,8 transcripts were found principally in parenchyma cells. The OsCIN2 transcript levels in the base were highest at 1 DBH, when rapid peduncle elongation began. Drought stress halted peduncle elongation and reduced OsCIN2 transcript level to 8% of the control level. On re-watering, peduncle elongation was restored and OsCIN2 transcript level recovered to 24% of the control. The abscisic acid (ABA) level of peduncles increased 7-fold on drought stress and returned to the control level on re-watering. Detached peduncles floated on water elongated little and lost all OsCIN2 transcripts, but on 50–100 μM GA3 they elongated rapidly and maintained high OsCIN2 transcript levels. ABA antagonized both peduncle elongation and maintenance of OsCIN2 transcript levels. We conclude that this antagonism is a potential intervention point for breeding strategies directed at enhancing panicle exsertion during or after drought stress at heading.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 24, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off