Tissue oxygen partial pressure in organs of chickens in the second half of embryogenesis and first days after hatching

Tissue oxygen partial pressure in organs of chickens in the second half of embryogenesis and... The aim of this study is to measure the oxygen partial pressure (pO2) in developing chicken tissues, namely, in the cerebral hemispheres, liver, m. pectoralis, and m. gastrocnemius, and to estimate the correlation of pO2 with the earlier measured values (laser Doppler flowmetry) of volume blood flow (BF) in these organs. We have studied 10-, 15-, and 19-day-old embryos and 4-day-old chickens anesthetized with urethane. The pO2 has been measured in the surface layers of organs with a membrane amperometric Clark-type O2 electrode (cathode diameter of approximately 50 μm) placed in the center of the sensor unit (outer diameter of 3.4 mm). Noticeable distinctions between both the tissue pO2 values in different organs and the dynamics of their changes during the observation time have been recorded. The following differences are the most important: (1) the lowest pO2} {cm(and BF) is observed in the brain and, especially, in the liver of 10-day-old embryos; (2) in the subsequent period of embryogenesis, the pO2 in the brain increases 1.9-fold (BF also increases), falls 1.7-fold in m. pectoralis, and displays minor changes in the liver and m. gastrocnemius on the background of constant BF value in the liver and both muscles; and (3) after hatching, pO2 in the liver and m. pectoralis increases severalfold (BF increases too) but does not change in a statistically significant manner in the brain and m. gastrocnemius despite an increase in BF (more pronouncedly in the muscle). Two possible mechanisms underlying the changes in the tissue pO2 in developing chicken organs have been proposed: one is determined by the specific features of intracardiac blood flows and the other is associated with the oxyhemoglobin dissociation pattern in the blood capillary circulation in the organs, determined by the specific features in its oxidative metabolism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Tissue oxygen partial pressure in organs of chickens in the second half of embryogenesis and first days after hatching

Loading next page...
Pleiades Publishing
Copyright © 2014 by Pleiades Publishing, Inc.
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial