Tissue oxygen partial pressure in organs of chickens in the second half of embryogenesis and first days after hatching

Tissue oxygen partial pressure in organs of chickens in the second half of embryogenesis and... The aim of this study is to measure the oxygen partial pressure (pO2) in developing chicken tissues, namely, in the cerebral hemispheres, liver, m. pectoralis, and m. gastrocnemius, and to estimate the correlation of pO2 with the earlier measured values (laser Doppler flowmetry) of volume blood flow (BF) in these organs. We have studied 10-, 15-, and 19-day-old embryos and 4-day-old chickens anesthetized with urethane. The pO2 has been measured in the surface layers of organs with a membrane amperometric Clark-type O2 electrode (cathode diameter of approximately 50 μm) placed in the center of the sensor unit (outer diameter of 3.4 mm). Noticeable distinctions between both the tissue pO2 values in different organs and the dynamics of their changes during the observation time have been recorded. The following differences are the most important: (1) the lowest pO2} {cm(and BF) is observed in the brain and, especially, in the liver of 10-day-old embryos; (2) in the subsequent period of embryogenesis, the pO2 in the brain increases 1.9-fold (BF also increases), falls 1.7-fold in m. pectoralis, and displays minor changes in the liver and m. gastrocnemius on the background of constant BF value in the liver and both muscles; and (3) after hatching, pO2 in the liver and m. pectoralis increases severalfold (BF increases too) but does not change in a statistically significant manner in the brain and m. gastrocnemius despite an increase in BF (more pronouncedly in the muscle). Two possible mechanisms underlying the changes in the tissue pO2 in developing chicken organs have been proposed: one is determined by the specific features of intracardiac blood flows and the other is associated with the oxyhemoglobin dissociation pattern in the blood capillary circulation in the organs, determined by the specific features in its oxidative metabolism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Tissue oxygen partial pressure in organs of chickens in the second half of embryogenesis and first days after hatching

Loading next page...
 
/lp/springer_journal/tissue-oxygen-partial-pressure-in-organs-of-chickens-in-the-second-0qxk2W1Q86
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360414050038
Publisher site
See Article on Publisher Site

Abstract

The aim of this study is to measure the oxygen partial pressure (pO2) in developing chicken tissues, namely, in the cerebral hemispheres, liver, m. pectoralis, and m. gastrocnemius, and to estimate the correlation of pO2 with the earlier measured values (laser Doppler flowmetry) of volume blood flow (BF) in these organs. We have studied 10-, 15-, and 19-day-old embryos and 4-day-old chickens anesthetized with urethane. The pO2 has been measured in the surface layers of organs with a membrane amperometric Clark-type O2 electrode (cathode diameter of approximately 50 μm) placed in the center of the sensor unit (outer diameter of 3.4 mm). Noticeable distinctions between both the tissue pO2 values in different organs and the dynamics of their changes during the observation time have been recorded. The following differences are the most important: (1) the lowest pO2} {cm(and BF) is observed in the brain and, especially, in the liver of 10-day-old embryos; (2) in the subsequent period of embryogenesis, the pO2 in the brain increases 1.9-fold (BF also increases), falls 1.7-fold in m. pectoralis, and displays minor changes in the liver and m. gastrocnemius on the background of constant BF value in the liver and both muscles; and (3) after hatching, pO2 in the liver and m. pectoralis increases severalfold (BF increases too) but does not change in a statistically significant manner in the brain and m. gastrocnemius despite an increase in BF (more pronouncedly in the muscle). Two possible mechanisms underlying the changes in the tissue pO2 in developing chicken organs have been proposed: one is determined by the specific features of intracardiac blood flows and the other is associated with the oxyhemoglobin dissociation pattern in the blood capillary circulation in the organs, determined by the specific features in its oxidative metabolism.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Sep 12, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off