Tissue engineered intrasynovial tendons: in vivo graft survival and tensile strength

Tissue engineered intrasynovial tendons: in vivo graft survival and tensile strength Rabbit flexor tendons can be harvested, acellularized, and used as scaffolds for reseeding of flexor tendon constructs. The purpose of this study was to compare the biomechanical characteristics of seeded and unseeded flexor tendon constructs to autologous grafts in vivo in the rabbit model. The experimental groups were created using acellularized rabbit tendon scaffolds: scaffolds with no cells, and scaffolds re-seeded with either tenocytes or adipoderived stem cells. Autologous flexor tendon grafts were used as controls. All constructs bridged a zone II defect in the rabbit and were explanted at 2, 4, 10, or 20 weeks. These tendons were then tested for ultimate tensile strength (UTS) or processed for histology. The experimental groups exhibited UTS comparable to autologous grafts up to 4 weeks, and were significantly weaker at 10 weeks ( p < 0.000–0.024). At 20 weeks, UTS was significantly improved ( p = 0.013) in tenocyte-seeded constructs compared with 10 weeks. There was no significant difference in UTS between seeded or unseeded constructs at 2, 4, and 20 weeks. In all groups, there were more cells at the repair ends, and the cells penetrated to the core of the grafts over time. The goal of this technology is the development of tissue engineered tendon grafts for clinical use. This study provides proof of the concept that tissue-engineered flexor tendons—both acellularized and reseeded—can survive and incorporate over time. Further work will focus on bioreactor preconditioning of reseeded constructs to increase ultimate tensile strength. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Plastic Surgery Springer Journals

Tissue engineered intrasynovial tendons: in vivo graft survival and tensile strength

Loading next page...
 
/lp/springer_journal/tissue-engineered-intrasynovial-tendons-in-vivo-graft-survival-and-kIY3V0qeeF
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Medicine & Public Health; Plastic Surgery
ISSN
0930-343X
eISSN
1435-0130
D.O.I.
10.1007/s00238-010-0398-4
Publisher site
See Article on Publisher Site

Abstract

Rabbit flexor tendons can be harvested, acellularized, and used as scaffolds for reseeding of flexor tendon constructs. The purpose of this study was to compare the biomechanical characteristics of seeded and unseeded flexor tendon constructs to autologous grafts in vivo in the rabbit model. The experimental groups were created using acellularized rabbit tendon scaffolds: scaffolds with no cells, and scaffolds re-seeded with either tenocytes or adipoderived stem cells. Autologous flexor tendon grafts were used as controls. All constructs bridged a zone II defect in the rabbit and were explanted at 2, 4, 10, or 20 weeks. These tendons were then tested for ultimate tensile strength (UTS) or processed for histology. The experimental groups exhibited UTS comparable to autologous grafts up to 4 weeks, and were significantly weaker at 10 weeks ( p < 0.000–0.024). At 20 weeks, UTS was significantly improved ( p = 0.013) in tenocyte-seeded constructs compared with 10 weeks. There was no significant difference in UTS between seeded or unseeded constructs at 2, 4, and 20 weeks. In all groups, there were more cells at the repair ends, and the cells penetrated to the core of the grafts over time. The goal of this technology is the development of tissue engineered tendon grafts for clinical use. This study provides proof of the concept that tissue-engineered flexor tendons—both acellularized and reseeded—can survive and incorporate over time. Further work will focus on bioreactor preconditioning of reseeded constructs to increase ultimate tensile strength.

Journal

European Journal of Plastic SurgerySpringer Journals

Published: Oct 1, 2010

References

  • Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor
    Riboh, J; Chong, AK; Pham, H; Longaker, M; Jacobs, C; Chang, J

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off