Tip vortex structure and aerodynamic loading on rotating wings in confined spaces

Tip vortex structure and aerodynamic loading on rotating wings in confined spaces Experiments on a rotating wing in a liquid-filled tank were conducted to determine the minimum required tip clearance to produce data free from wall effects. A rotating wing fixed at an angle of attack of 45° was revolved for two revolutions at Reynolds numbers between 120 and 10,000. Tip clearance was varied from 0.5 to 5 chords by varying wing size, while also varying wing speed to hold Reynolds number constant. Force measurements on the wing, as well as dye flow visualization and particle image velocimetry of the entire tank, were conducted. Tip clearances of 0.5–7 chords were also tested computationally. Results of all measurements show large tip effects for 0.5 chords of tip clearance, and no wall effects for 5 chords of tip clearance at all Reynolds numbers tested. The 3 chord clearance case showed negligible wall effects in both the particle image velocimetry and dye flow visualization for all Reynolds numbers observed. The forces on the 3 chord tip clearance wing indicate wall effects appearing in the second revolution for Reynolds numbers of >1,000. A tip clearance of 5 chords is deemed to be free of wall effects for experiments limited to two wing revolutions within the range of tested Reynolds numbers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Tip vortex structure and aerodynamic loading on rotating wings in confined spaces

Loading next page...
 
/lp/springer_journal/tip-vortex-structure-and-aerodynamic-loading-on-rotating-wings-in-MH0j2dEQav
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1815-4
Publisher site
See Article on Publisher Site

Abstract

Experiments on a rotating wing in a liquid-filled tank were conducted to determine the minimum required tip clearance to produce data free from wall effects. A rotating wing fixed at an angle of attack of 45° was revolved for two revolutions at Reynolds numbers between 120 and 10,000. Tip clearance was varied from 0.5 to 5 chords by varying wing size, while also varying wing speed to hold Reynolds number constant. Force measurements on the wing, as well as dye flow visualization and particle image velocimetry of the entire tank, were conducted. Tip clearances of 0.5–7 chords were also tested computationally. Results of all measurements show large tip effects for 0.5 chords of tip clearance, and no wall effects for 5 chords of tip clearance at all Reynolds numbers tested. The 3 chord clearance case showed negligible wall effects in both the particle image velocimetry and dye flow visualization for all Reynolds numbers observed. The forces on the 3 chord tip clearance wing indicate wall effects appearing in the second revolution for Reynolds numbers of >1,000. A tip clearance of 5 chords is deemed to be free of wall effects for experiments limited to two wing revolutions within the range of tested Reynolds numbers.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 2, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off