TiO2/polypyrrole nanocomposites photoactive under visible light synthesized by heterophase polymerization in the presence of different surfactants

TiO2/polypyrrole nanocomposites photoactive under visible light synthesized by heterophase... TiO2/polypyrrole nanocomposites were synthesized by batch (B) and semi-batch (SB) heterophase polymerization of pyrrole onto TiO2 nanoparticles. Sodium bis-2-ethylhexyl sulfosuccinate (AOT), hexadecyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) were used as surfactants while ammonium persulfate served as oxidizing agent. The resulting nanocomposites were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, UV/Vis diffuse reflectance spectroscopy, Raman spectroscopy, and cyclic voltammetry. TiO2/polypyrrole nanoparticles were tested as photocatalysts under visible light in the degradation of methylene blue. Nanocomposites with conductivities between 4.85 × 10−7 and 1.88 × 10−2 S/cm were obtained. It was concluded that the polymerization mode and the surfactant type, used as a stabilizing agent, have a strong effect on the photocatalytic activity of the materials. The best results were obtained when SDS was used and polymerization carried out in SB mode. Percentage of photodegradation under visible light after 15 min was as follows: TiO2 1.7 %, CTAB-SB 25.5 %, SDS-B 39.6 %, CTAB-B 57.5 %, AOT-SB 69.4 %, AOT-B 80.1 %, and SDS-SB 94.1 %; while under UV light irradiation after 60 min the percentages were: SDS-B 64 %, CTAB-SB 67 %, CTAB-B 69 %, TiO2 71 %, AOT-SB 88.2 %, AOT-B 95.0 %, and SDS-SB 96.5 %. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

TiO2/polypyrrole nanocomposites photoactive under visible light synthesized by heterophase polymerization in the presence of different surfactants

Loading next page...
 
/lp/springer_journal/tio2-polypyrrole-nanocomposites-photoactive-under-visible-light-2EFKjSasL0
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1886-0
Publisher site
See Article on Publisher Site

Abstract

TiO2/polypyrrole nanocomposites were synthesized by batch (B) and semi-batch (SB) heterophase polymerization of pyrrole onto TiO2 nanoparticles. Sodium bis-2-ethylhexyl sulfosuccinate (AOT), hexadecyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) were used as surfactants while ammonium persulfate served as oxidizing agent. The resulting nanocomposites were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, UV/Vis diffuse reflectance spectroscopy, Raman spectroscopy, and cyclic voltammetry. TiO2/polypyrrole nanoparticles were tested as photocatalysts under visible light in the degradation of methylene blue. Nanocomposites with conductivities between 4.85 × 10−7 and 1.88 × 10−2 S/cm were obtained. It was concluded that the polymerization mode and the surfactant type, used as a stabilizing agent, have a strong effect on the photocatalytic activity of the materials. The best results were obtained when SDS was used and polymerization carried out in SB mode. Percentage of photodegradation under visible light after 15 min was as follows: TiO2 1.7 %, CTAB-SB 25.5 %, SDS-B 39.6 %, CTAB-B 57.5 %, AOT-SB 69.4 %, AOT-B 80.1 %, and SDS-SB 94.1 %; while under UV light irradiation after 60 min the percentages were: SDS-B 64 %, CTAB-SB 67 %, CTAB-B 69 %, TiO2 71 %, AOT-SB 88.2 %, AOT-B 95.0 %, and SDS-SB 96.5 %.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 12, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off