TiO2 nanotube/ZnO nanorod/CdS on Ti mesh with three-dimensional array structure for photocatalytic degradation under visible lightirradiation

TiO2 nanotube/ZnO nanorod/CdS on Ti mesh with three-dimensional array structure for... The three-dimensional (3D) TiO2 nanotube arrays (TNTA) were prepared by electrochemical anodization of Ti mesh in a mixed electrolyte solution of (NH4)2SO4 and NH4F. Well-defined CdS-sensitized ZnO nanorod arrays (ZNRA/CdS) were successfully built on TNTA by the hydrothermal method and chemical bath deposition. The as-prepared samples were characterized by means of XRD, FESEM, and UV–Vis. The photocatalytic activities of the samples were evaluated by measuring the photodegradation of methylene blue (MB) in aqueous solution under visible light irradiation. The photocatalytic efficiencies for MB degradation were 49 and 60 % for Ti mesh/ZNRA/CdS and Ti mesh/TNTA/ZNRA/CdS after irradiation for 6 h, respectively. This can be attributed to the presence of TNTA at the bottom of a ZNRA/CdS composite, which provides a direct pathway for photoinjected electrons transferring along the photoanode to enhance charge-collection efficiency and consequently reduce electron–hole recombination. Furthermore, it can enlarge the practical applications range of TiO2 due to its 3D nanoarray structure with good light-harvesting ability and flexibility. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

TiO2 nanotube/ZnO nanorod/CdS on Ti mesh with three-dimensional array structure for photocatalytic degradation under visible lightirradiation

Loading next page...
 
/lp/springer_journal/tio2-nanotube-zno-nanorod-cds-on-ti-mesh-with-three-dimensional-array-he7Hx3RR24
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2297-6
Publisher site
See Article on Publisher Site

Abstract

The three-dimensional (3D) TiO2 nanotube arrays (TNTA) were prepared by electrochemical anodization of Ti mesh in a mixed electrolyte solution of (NH4)2SO4 and NH4F. Well-defined CdS-sensitized ZnO nanorod arrays (ZNRA/CdS) were successfully built on TNTA by the hydrothermal method and chemical bath deposition. The as-prepared samples were characterized by means of XRD, FESEM, and UV–Vis. The photocatalytic activities of the samples were evaluated by measuring the photodegradation of methylene blue (MB) in aqueous solution under visible light irradiation. The photocatalytic efficiencies for MB degradation were 49 and 60 % for Ti mesh/ZNRA/CdS and Ti mesh/TNTA/ZNRA/CdS after irradiation for 6 h, respectively. This can be attributed to the presence of TNTA at the bottom of a ZNRA/CdS composite, which provides a direct pathway for photoinjected electrons transferring along the photoanode to enhance charge-collection efficiency and consequently reduce electron–hole recombination. Furthermore, it can enlarge the practical applications range of TiO2 due to its 3D nanoarray structure with good light-harvesting ability and flexibility.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 5, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off