TiO2–CeO2 prepared by using pressurized and supercritical fluids: effect of processing parameters and cerium amount on (micro)structural and morphological properties

TiO2–CeO2 prepared by using pressurized and supercritical fluids: effect of processing... Ce x Ti1−x O n composites with different Ti:Ce molar ratios (from 95:05 up to 70:30) were prepared unconventionally, via the sol–gel process controlled within reverse micelles of nonionic surfactant and processing by pressurized hot and supercritical fluids in a flow regime as an alternative to common thermal treatment. Nitrogen physisorption, powder X-ray diffraction (XRD) combined with Rietveld/whole powder pattern modeling (WPPM) and organic elemental analysis (OEA) were used as tools for characterization of the porous structure morphology, structural and microstructural properties, and purity of the prepared composites. All prepared Ce x Ti1−x O n composites possessed well-developed mesoporous structure with minimum portion of micropores, showing specific surface area in the range of 203–256 m2/g. The experimental conditions during pressurized hot and supercritical processing as well as the Ce loading played a key role in crystallization of individual Ce x Ti1−x O n composites. With increasing Ce loading, crystallization of anatase at the expense of brookite was promoted, accompanied with decreasing microstrain in anatase crystallites. The elevated processing temperature (250 °C) led to crystallization of CeO2 cubic beside TiO2 anatase. As a consequence of the different solubility of the used surfactant in pressurized hot and supercritical solvents under pressures of 10 and 30 MPa, cubic CeO2 crystallites of different sizes were formed. This property of CeO2 crystallites crucially affected the recrystallization of Ce0.30Ti0.70O n -S composites at elevated temperatures; small and uniform CeO2 crystallites stabilized the anatase–cerianite phase mixture, giving rise to minor brookite phase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

TiO2–CeO2 prepared by using pressurized and supercritical fluids: effect of processing parameters and cerium amount on (micro)structural and morphological properties

Loading next page...
 
/lp/springer_journal/tio2-ceo2-prepared-by-using-pressurized-and-supercritical-fluids-K3X3Hd6qCV
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-1990-9
Publisher site
See Article on Publisher Site

Abstract

Ce x Ti1−x O n composites with different Ti:Ce molar ratios (from 95:05 up to 70:30) were prepared unconventionally, via the sol–gel process controlled within reverse micelles of nonionic surfactant and processing by pressurized hot and supercritical fluids in a flow regime as an alternative to common thermal treatment. Nitrogen physisorption, powder X-ray diffraction (XRD) combined with Rietveld/whole powder pattern modeling (WPPM) and organic elemental analysis (OEA) were used as tools for characterization of the porous structure morphology, structural and microstructural properties, and purity of the prepared composites. All prepared Ce x Ti1−x O n composites possessed well-developed mesoporous structure with minimum portion of micropores, showing specific surface area in the range of 203–256 m2/g. The experimental conditions during pressurized hot and supercritical processing as well as the Ce loading played a key role in crystallization of individual Ce x Ti1−x O n composites. With increasing Ce loading, crystallization of anatase at the expense of brookite was promoted, accompanied with decreasing microstrain in anatase crystallites. The elevated processing temperature (250 °C) led to crystallization of CeO2 cubic beside TiO2 anatase. As a consequence of the different solubility of the used surfactant in pressurized hot and supercritical solvents under pressures of 10 and 30 MPa, cubic CeO2 crystallites of different sizes were formed. This property of CeO2 crystallites crucially affected the recrystallization of Ce0.30Ti0.70O n -S composites at elevated temperatures; small and uniform CeO2 crystallites stabilized the anatase–cerianite phase mixture, giving rise to minor brookite phase.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off