Timing of K-alkaline magmatism in the Balkan segment of southeast European Variscan edifice: ID-TIMS and LA-ICP-MS study

Timing of K-alkaline magmatism in the Balkan segment of southeast European Variscan edifice:... The Variscan orogen in southeast Europe is exposed in isolated remnants, affected by a subsequent Alpine tectono-magmatic overprint. Unlike the central European Variscides, in SE Europe the juxtaposition and correlation of the events and products are impeded by the scarcity of Variscan domains with preserved magmatic, metamorphic, sedimentological and structural characteristics. To reveal the particular evolution of the Variscan orogen in Balkan Mts, we present the results of ID-TIMS and LA-ICP-MS dating of three potassic-alkaline intrusions: Svidnya, Buhovo–Seslavtsi and Shipka. The age determinations from the plutons do not permit to establish their unequivocal ages, but they bracket the time interval of emplacements. Based on geochronological, tectonic and stratigraphic evidence the emplacement interval for plutons could be: 317–310 Ma for Svidnya, 330–310 Ma for Buhovo–Seslavtsi and 320–303 Ma for Shipka. These results show that the generation of potassic-alkaline magmas was post-Visean and is contemporaneous with the adjacent numerous calc-alkaline granitoid plutons. Thus, the Variscan orogen in the Balkan Mts is not characterized by a time-dependent geochemical evolution of magma generation. Hence, the observed differences in the rocks’ compositions can be interpreted solely by distinction between the magma sources. The available data for both potassic-alkaline and calc-alkaline rocks indicate that the major episodes of crustal stacking and shearing in the Balkan part of the Variscan edifice are pre-Visean (~330 Ma). The present study reveals that the potassic-alkaline rocks from the Balkan Mts are younger than the central European potassic granitoids (durbachites). It suggests that melting of enriched mantle source took place at different times throughout the Variscan orogen. In spite of the alkaline character of the magmas, the studied zircons show a complex nature, with inherited cores and magmatic overgrowths. The observed heterogeneities in the zircons imply the presence of much older materials in the petrogenesis of the rocks from the potassic-alkaline plutons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Earth Sciences Springer Journals

Timing of K-alkaline magmatism in the Balkan segment of southeast European Variscan edifice: ID-TIMS and LA-ICP-MS study

Loading next page...
 
/lp/springer_journal/timing-of-k-alkaline-magmatism-in-the-balkan-segment-of-southeast-QLh2rpEYsc
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Geophysics/Geodesy; Sedimentology; Structural Geology; Mineral Resources; Geochemistry
ISSN
1437-3254
eISSN
1437-3262
D.O.I.
10.1007/s00531-017-1527-0
Publisher site
See Article on Publisher Site

Abstract

The Variscan orogen in southeast Europe is exposed in isolated remnants, affected by a subsequent Alpine tectono-magmatic overprint. Unlike the central European Variscides, in SE Europe the juxtaposition and correlation of the events and products are impeded by the scarcity of Variscan domains with preserved magmatic, metamorphic, sedimentological and structural characteristics. To reveal the particular evolution of the Variscan orogen in Balkan Mts, we present the results of ID-TIMS and LA-ICP-MS dating of three potassic-alkaline intrusions: Svidnya, Buhovo–Seslavtsi and Shipka. The age determinations from the plutons do not permit to establish their unequivocal ages, but they bracket the time interval of emplacements. Based on geochronological, tectonic and stratigraphic evidence the emplacement interval for plutons could be: 317–310 Ma for Svidnya, 330–310 Ma for Buhovo–Seslavtsi and 320–303 Ma for Shipka. These results show that the generation of potassic-alkaline magmas was post-Visean and is contemporaneous with the adjacent numerous calc-alkaline granitoid plutons. Thus, the Variscan orogen in the Balkan Mts is not characterized by a time-dependent geochemical evolution of magma generation. Hence, the observed differences in the rocks’ compositions can be interpreted solely by distinction between the magma sources. The available data for both potassic-alkaline and calc-alkaline rocks indicate that the major episodes of crustal stacking and shearing in the Balkan part of the Variscan edifice are pre-Visean (~330 Ma). The present study reveals that the potassic-alkaline rocks from the Balkan Mts are younger than the central European potassic granitoids (durbachites). It suggests that melting of enriched mantle source took place at different times throughout the Variscan orogen. In spite of the alkaline character of the magmas, the studied zircons show a complex nature, with inherited cores and magmatic overgrowths. The observed heterogeneities in the zircons imply the presence of much older materials in the petrogenesis of the rocks from the potassic-alkaline plutons.

Journal

International Journal of Earth SciencesSpringer Journals

Published: Aug 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off