Time-supersampling of 3D-PIV measurements with vortex-in-cell simulation

Time-supersampling of 3D-PIV measurements with vortex-in-cell simulation The present work investigates the use of a numerical approximation to the Navier–Stokes equations to increase the temporal resolution of time-resolved PIV data for general flows. The solution of the governing equations is applied to 3D data obtained from tomographic PIV and is based on the vortex-in-cell method (Christiansen in J Comput Phys 13:363–379, 1973) under the hypothesis of incompressible flow. The principle of time-supersampling is that the spatial information can be leveraged to increase the temporal resolution. The unsteady numerical simulation of the dynamic evolution of the flow is applied within the 3D measurement domain and time integration is performed between each pair of consecutive measurements. Initial conditions are taken from the first measurement field and time-resolved boundary conditions are approximated between the two fields. Temporal continuity of the velocity field is obtained by imposing a weighted average of forward and backward time integration. The accuracy of this time-supersampling method is studied for two experimental datasets obtained from time-resolved tomographic PIV measurements: a turbulent wake and a circular jet. The results are compared to linear interpolation, advection-based supersampling, and measurement data at high sampling rate. In both flows, we demonstrate the ability to reconstruct detailed temporal dynamics using data sub-sampled at a rate far below the Nyquist frequency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Time-supersampling of 3D-PIV measurements with vortex-in-cell simulation

Loading next page...
 
/lp/springer_journal/time-supersampling-of-3d-piv-measurements-with-vortex-in-cell-kMa5JKbgv8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by The Author(s)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1692-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial