Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Time-sensitive software-defined networking (Ts-SDN) control architecture for flexi-grid optical networks with data center application

Time-sensitive software-defined networking (Ts-SDN) control architecture for flexi-grid optical... Data center interconnected by flexi-grid optical networks is a promising scenario to meet the high burstiness and high bandwidth requirement of data center application, because flexi-grid optical networks can allocate spectral resources for applications in a dynamic, tunable and efficient control manner. Meanwhile, as centralized control architecture, the software-defined networking (SDN) enabled by OpenFlow protocol can provide maximum flexibility for the networks and make a unified control over various resources for the joint optimization of data center and network resources. Time factor is firstly introduced into SDN-based control architecture for flexi-grid optical networks supporting data center application. A traffic model considering time factor is proposed, and a requirement parameter, i.e., bandwidth-period product is adopted for the service requirement measurement. Then, time-sensitive software-defined networking (Ts-SDN)-based control architecture is designed with OpenFlow protocol extension. A novel deadline-driven PCE algorithm is proposed for the deadline-driven service under Ts-SDN-based control architecture, which can complete data center selection, path computation and bandwidth resource allocation. Finally, simulation results shows that our proposed Ts-SDN control architecture and deadline-driven PCE algorithm can improve the application and network performance to a large extent in blocking probability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Time-sensitive software-defined networking (Ts-SDN) control architecture for flexi-grid optical networks with data center application

Loading next page...
1
 
/lp/springer_journal/time-sensitive-software-defined-networking-ts-sdn-control-architecture-aSfHMrX8ce

References (6)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
DOI
10.1007/s11107-014-0437-3
Publisher site
See Article on Publisher Site

Abstract

Data center interconnected by flexi-grid optical networks is a promising scenario to meet the high burstiness and high bandwidth requirement of data center application, because flexi-grid optical networks can allocate spectral resources for applications in a dynamic, tunable and efficient control manner. Meanwhile, as centralized control architecture, the software-defined networking (SDN) enabled by OpenFlow protocol can provide maximum flexibility for the networks and make a unified control over various resources for the joint optimization of data center and network resources. Time factor is firstly introduced into SDN-based control architecture for flexi-grid optical networks supporting data center application. A traffic model considering time factor is proposed, and a requirement parameter, i.e., bandwidth-period product is adopted for the service requirement measurement. Then, time-sensitive software-defined networking (Ts-SDN)-based control architecture is designed with OpenFlow protocol extension. A novel deadline-driven PCE algorithm is proposed for the deadline-driven service under Ts-SDN-based control architecture, which can complete data center selection, path computation and bandwidth resource allocation. Finally, simulation results shows that our proposed Ts-SDN control architecture and deadline-driven PCE algorithm can improve the application and network performance to a large extent in blocking probability.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Apr 26, 2014

There are no references for this article.