Time-sensitive software-defined networking (Ts-SDN) control architecture for flexi-grid optical networks with data center application

Time-sensitive software-defined networking (Ts-SDN) control architecture for flexi-grid optical... Data center interconnected by flexi-grid optical networks is a promising scenario to meet the high burstiness and high bandwidth requirement of data center application, because flexi-grid optical networks can allocate spectral resources for applications in a dynamic, tunable and efficient control manner. Meanwhile, as centralized control architecture, the software-defined networking (SDN) enabled by OpenFlow protocol can provide maximum flexibility for the networks and make a unified control over various resources for the joint optimization of data center and network resources. Time factor is firstly introduced into SDN-based control architecture for flexi-grid optical networks supporting data center application. A traffic model considering time factor is proposed, and a requirement parameter, i.e., bandwidth-period product is adopted for the service requirement measurement. Then, time-sensitive software-defined networking (Ts-SDN)-based control architecture is designed with OpenFlow protocol extension. A novel deadline-driven PCE algorithm is proposed for the deadline-driven service under Ts-SDN-based control architecture, which can complete data center selection, path computation and bandwidth resource allocation. Finally, simulation results shows that our proposed Ts-SDN control architecture and deadline-driven PCE algorithm can improve the application and network performance to a large extent in blocking probability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Time-sensitive software-defined networking (Ts-SDN) control architecture for flexi-grid optical networks with data center application

Loading next page...
Springer US
Copyright © 2014 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial