Time-resolved velocity and concentration measurements in variable-viscosity turbulent jet flow

Time-resolved velocity and concentration measurements in variable-viscosity turbulent jet flow This paper addresses the ability to reliably measure the fluctuating velocity field in variable-viscosity flows (herein, a propane–air mixture), using hot-wire anemometry. Because the latter is sensitive to both velocity and concentration fluctuations, the instantaneous concentration field also needs to be inferred experimentally. To overcome this difficulty, we show that the hot-wire response becomes insensitive to the concentration of the field, when a small amount of neon is added to the air. In this way, velocity measurements can be made independently of the concentration field. Although not necessary to velocity measurements, Rayleigh light-scattering technique is also used to infer the local (fluctuating) concentration, and, therefore, the viscosity of the fluid. Velocity and concentration measurements are performed in a turbulent propane jet discharging into an air–neon co-flow, for which the density and viscosity ratios are 1.52 and 1/5.5, respectively. The Reynolds number (based on injection diameter and velocity) is 15400. These measurements are first validated: the axial decay of the mean velocity and concentration, as well as the lateral mean and RMS profiles of velocity and concentration, is in full agreement with the existing literature. The variable-viscosity flow along the axis of the round jet is then characterized and compared with a turbulent air jet discharging into still air, for which the Reynolds number (based on injection diameter and velocity) is 5400. Both flows have the same initial jet momentum. As mixing with the viscous co-flow is enhanced with increasing downstream position, the viscosity of the fluid increases rapidly for the case of the propane jet. In comparison with the air jet, the propane jet exhibits: (1) a lower local Reynolds number based on the Taylor microscale (by a factor of four); (2) a reduced range of scales present in the flow; (3) the isotropic form of the mean energy dissipation rate is first more enhanced and then drastically diminishes and (4) a progressively increasing local Schmidt number (from 1.36 to 7.5) for increasing downstream positions. Therefore, the scalar spectra exhibit an increasingly prominent Batchelor regime with a ~ k −1 scaling law. The experimental technique developed herein provides a reliable method for the study of variable-viscosity flows. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Time-resolved velocity and concentration measurements in variable-viscosity turbulent jet flow

Loading next page...
 
/lp/springer_journal/time-resolved-velocity-and-concentration-measurements-in-variable-aw1igaxgzz
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0729-z
Publisher site
See Article on Publisher Site

Abstract

This paper addresses the ability to reliably measure the fluctuating velocity field in variable-viscosity flows (herein, a propane–air mixture), using hot-wire anemometry. Because the latter is sensitive to both velocity and concentration fluctuations, the instantaneous concentration field also needs to be inferred experimentally. To overcome this difficulty, we show that the hot-wire response becomes insensitive to the concentration of the field, when a small amount of neon is added to the air. In this way, velocity measurements can be made independently of the concentration field. Although not necessary to velocity measurements, Rayleigh light-scattering technique is also used to infer the local (fluctuating) concentration, and, therefore, the viscosity of the fluid. Velocity and concentration measurements are performed in a turbulent propane jet discharging into an air–neon co-flow, for which the density and viscosity ratios are 1.52 and 1/5.5, respectively. The Reynolds number (based on injection diameter and velocity) is 15400. These measurements are first validated: the axial decay of the mean velocity and concentration, as well as the lateral mean and RMS profiles of velocity and concentration, is in full agreement with the existing literature. The variable-viscosity flow along the axis of the round jet is then characterized and compared with a turbulent air jet discharging into still air, for which the Reynolds number (based on injection diameter and velocity) is 5400. Both flows have the same initial jet momentum. As mixing with the viscous co-flow is enhanced with increasing downstream position, the viscosity of the fluid increases rapidly for the case of the propane jet. In comparison with the air jet, the propane jet exhibits: (1) a lower local Reynolds number based on the Taylor microscale (by a factor of four); (2) a reduced range of scales present in the flow; (3) the isotropic form of the mean energy dissipation rate is first more enhanced and then drastically diminishes and (4) a progressively increasing local Schmidt number (from 1.36 to 7.5) for increasing downstream positions. Therefore, the scalar spectra exhibit an increasingly prominent Batchelor regime with a ~ k −1 scaling law. The experimental technique developed herein provides a reliable method for the study of variable-viscosity flows.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 22, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off