Time resolved measurements of the flow generated by suction feeding fish

Time resolved measurements of the flow generated by suction feeding fish The majority of aquatic vertebrates are suction feeders: by rapidly expanding the mouth cavity they generate a fluid flow outside of their head in order to draw prey into their mouth. In addition to the biological relevance, the generated flow field is interesting fluid mechanically as it incorporates high velocities, is localized in front of the mouth, and is unsteady, typically lasting between 10 and 50 ms. Using manometry and high-speed particle image velocimetry, this is the first study to quantify pressure within and outside the mouth of a feeding fish while simultaneously measuring the velocity field outside the mouth. Measurements with a high temporal (2 ms) and spatial (<1 mm) resolution were made for several feeding events of a single largemouth bass (Micropterus salmoides). General properties of the flow were evaluated, including the transient velocity field, its relationship to pressure within the mouth and pressure at the prey. We find that throughout the feeding event a relationship exists for the magnitude of fluid speed as a function of distance from the predator mouth that is based on scaling the velocity field according to the size of the mouth opening and the magnitude of fluid speed at the mouth. The velocity field is concentrated within an area extending approximately one mouth diameter from the fish and the generated pressure field is even more local to the mouth aperture. Although peak suction pressures measured inside the mouth were slightly larger than those that were predicted using the equations of motion, we find that these equations give a very accurate prediction of the timing of peak pressure, so long as the unsteady nature of the flow is included. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Time resolved measurements of the flow generated by suction feeding fish

Loading next page...
Copyright © 2007 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial