Time-resolved (kHz) 3D imaging of OH PLIF in a flame

Time-resolved (kHz) 3D imaging of OH PLIF in a flame Based on scanning planar laser-induced fluorescence of OH, a measurement system with the capability to record time-resolved three-dimensional image sequences of the OH concentration and the flame front is demonstrated on a premixed flame. A dual-mirror scanning system is used to obtain equidistance between the illuminated planes. Non-uniformities in the laser sheet and laser absorption in the flame are compensated for as the position- and time-dependent OH concentration is calculated throughout the measurement volume. A method for identifying the flame front in large data sets with a single set of filtering parameter is demonstrated. The artefacts introduced by the non-instantaneous recording of the measurement volume are suppressed using linear interpolation from successive recordings in the same measurement plane. The impact from filtering and image post-processing on the achieved spatial resolution is investigated. A final spatial and temporal resolution of 3.2 × 3.2 × 0.75 lines/mm and 2 ms, respectively, are obtained in a measurement volume spanning 11 × 22 × 6 mm during a time span of 0.5 s. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Time-resolved (kHz) 3D imaging of OH PLIF in a flame

Loading next page...
 
/lp/springer_journal/time-resolved-khz-3d-imaging-of-oh-plif-in-a-flame-h9r0db9nAS
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1764-y
Publisher site
See Article on Publisher Site

Abstract

Based on scanning planar laser-induced fluorescence of OH, a measurement system with the capability to record time-resolved three-dimensional image sequences of the OH concentration and the flame front is demonstrated on a premixed flame. A dual-mirror scanning system is used to obtain equidistance between the illuminated planes. Non-uniformities in the laser sheet and laser absorption in the flame are compensated for as the position- and time-dependent OH concentration is calculated throughout the measurement volume. A method for identifying the flame front in large data sets with a single set of filtering parameter is demonstrated. The artefacts introduced by the non-instantaneous recording of the measurement volume are suppressed using linear interpolation from successive recordings in the same measurement plane. The impact from filtering and image post-processing on the achieved spatial resolution is investigated. A final spatial and temporal resolution of 3.2 × 3.2 × 0.75 lines/mm and 2 ms, respectively, are obtained in a measurement volume spanning 11 × 22 × 6 mm during a time span of 0.5 s.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 14, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off