Time-Dependent Molecular Memory in Single Voltage-Gated Sodium Channel

Time-Dependent Molecular Memory in Single Voltage-Gated Sodium Channel Excitability in neurons is associated with firing of action potentials and requires the opening of voltage-gated sodium channels with membrane depolarization. Sustained membrane depolarization, as seen in pathophysiological conditions like epilepsy, can have profound implications on the biophysical properties of voltage-gated ion channels. Therefore, we sought to characterize the effect of sustained membrane depolarization on single voltage-gated Na+ channels. Single-channel activity was recorded in the cell-attached patch-clamp mode from the rNav1.2α channels expressed in CHO cells. Classical statistical analysis revealed complex nonlinear changes in channel dwell times and unitary conductance of single Na+ channels as a function of conditioning membrane depolarization. Signal processing tools like weighted wavelet Z (WWZ) and discrete Fourier transform analyses attributed a “pseudo-oscillatory” nature to the observed nonlinear variation in the kinetic parameters. Modeling studies using the hidden Markov model (HMM) illustrated significant changes in kinetic states and underlying state transition rate constants upon conditioning depolarization. Our results suggest that sustained membrane depolarization induces novel nonlinear properties in voltage-gated Na+ channels. Prolonged membrane depolarization also induced a “molecular memory” phenomenon, characterized by clusters of dwell time events and strong autocorrelation in the dwell time series similar to that reported recently for single enzyme molecules. The persistence of such molecular memory was found to be dependent on the duration of depolarization. Voltage-gated Na+ channel with the observed time-dependent nonlinear properties and the molecular memory phenomenon may determine the functional state of the channel and, in turn, the excitability of a neuron. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Time-Dependent Molecular Memory in Single Voltage-Gated Sodium Channel

Loading next page...
 
/lp/springer_journal/time-dependent-molecular-memory-in-single-voltage-gated-sodium-channel-aWU0R0UKq4
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-9058-4
Publisher site
See Article on Publisher Site

Abstract

Excitability in neurons is associated with firing of action potentials and requires the opening of voltage-gated sodium channels with membrane depolarization. Sustained membrane depolarization, as seen in pathophysiological conditions like epilepsy, can have profound implications on the biophysical properties of voltage-gated ion channels. Therefore, we sought to characterize the effect of sustained membrane depolarization on single voltage-gated Na+ channels. Single-channel activity was recorded in the cell-attached patch-clamp mode from the rNav1.2α channels expressed in CHO cells. Classical statistical analysis revealed complex nonlinear changes in channel dwell times and unitary conductance of single Na+ channels as a function of conditioning membrane depolarization. Signal processing tools like weighted wavelet Z (WWZ) and discrete Fourier transform analyses attributed a “pseudo-oscillatory” nature to the observed nonlinear variation in the kinetic parameters. Modeling studies using the hidden Markov model (HMM) illustrated significant changes in kinetic states and underlying state transition rate constants upon conditioning depolarization. Our results suggest that sustained membrane depolarization induces novel nonlinear properties in voltage-gated Na+ channels. Prolonged membrane depolarization also induced a “molecular memory” phenomenon, characterized by clusters of dwell time events and strong autocorrelation in the dwell time series similar to that reported recently for single enzyme molecules. The persistence of such molecular memory was found to be dependent on the duration of depolarization. Voltage-gated Na+ channel with the observed time-dependent nonlinear properties and the molecular memory phenomenon may determine the functional state of the channel and, in turn, the excitability of a neuron.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off