Time-average measurement of velocity, density, temperature, and turbulence velocity fluctuations using Rayleigh and Mie scattering

Time-average measurement of velocity, density, temperature, and turbulence velocity fluctuations... Measurement of time-averaged velocity, density, temperature, and turbulence velocity fluctuations in sparsely seeded gas flows using a non-intrusive, point-wise technique based on Rayleigh and Mie scattering is discussed. A Fabry-Perot interferometer (FPI) is used to spectrally resolve laser light scattered by molecules and particulates in gas flows. The spectral content of the scattered light provides information about velocity, density, and temperature of the gas. A CCD camera is used to record images of the fringes formed by scattered light passing through the interferometer. Models of the spectral components are used in a least squares fitting routine to estimate the parameters from fringe images. Flow measurements are presented for subsonic and supersonic jet flows. The application range for this technique is mostly for high velocity situations (>25 m/s). Velocity, density, temperature, and turbulence velocity fluctuations were determined with accuracies within 5 m/s, 4%, 2%, and 5 m/s, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Time-average measurement of velocity, density, temperature, and turbulence velocity fluctuations using Rayleigh and Mie scattering

Loading next page...
 
/lp/springer_journal/time-average-measurement-of-velocity-density-temperature-and-I8ytOQG2oJ
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0990-8
Publisher site
See Article on Publisher Site

Abstract

Measurement of time-averaged velocity, density, temperature, and turbulence velocity fluctuations in sparsely seeded gas flows using a non-intrusive, point-wise technique based on Rayleigh and Mie scattering is discussed. A Fabry-Perot interferometer (FPI) is used to spectrally resolve laser light scattered by molecules and particulates in gas flows. The spectral content of the scattered light provides information about velocity, density, and temperature of the gas. A CCD camera is used to record images of the fringes formed by scattered light passing through the interferometer. Models of the spectral components are used in a least squares fitting routine to estimate the parameters from fringe images. Flow measurements are presented for subsonic and supersonic jet flows. The application range for this technique is mostly for high velocity situations (>25 m/s). Velocity, density, temperature, and turbulence velocity fluctuations were determined with accuracies within 5 m/s, 4%, 2%, and 5 m/s, respectively.

Journal

Experiments in FluidsSpringer Journals

Published: May 24, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off