Tilings of nonorientable surfaces by Steiner triple systems

Tilings of nonorientable surfaces by Steiner triple systems A Steiner triple system of order n (for short, STS(n)) is a system of three-element blocks (triples) of elements of an n-set such that each unordered pair of elements occurs in precisely one triple. Assign to each triple (i,j,k) ∊ STS(n) a topological triangle with vertices i, j, and k. Gluing together like sides of the triangles that correspond to a pair of disjoint STS(n) of a special form yields a black-and-white tiling of some closed surface. For each n ≡ 3 (mod 6) we prove that there exist nonisomorphic tilings of nonorientable surfaces by pairs of Steiner triple systems of order n. We also show that for half of the values n ≡ 1 (mod 6) there are nonisomorphic tilings of nonorientable closed surfaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Tilings of nonorientable surfaces by Steiner triple systems

, Volume 43 (3) – Oct 26, 2007
12 pages

/lp/springer_journal/tilings-of-nonorientable-surfaces-by-steiner-triple-systems-7UqQF2QnJU
Publisher
Nauka/Interperiodica
Subject
Engineering; Communications Engineering, Networks; Electronic and Computer Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946007030040
Publisher site
See Article on Publisher Site

Abstract

A Steiner triple system of order n (for short, STS(n)) is a system of three-element blocks (triples) of elements of an n-set such that each unordered pair of elements occurs in precisely one triple. Assign to each triple (i,j,k) ∊ STS(n) a topological triangle with vertices i, j, and k. Gluing together like sides of the triangles that correspond to a pair of disjoint STS(n) of a special form yields a black-and-white tiling of some closed surface. For each n ≡ 3 (mod 6) we prove that there exist nonisomorphic tilings of nonorientable surfaces by pairs of Steiner triple systems of order n. We also show that for half of the values n ≡ 1 (mod 6) there are nonisomorphic tilings of nonorientable closed surfaces.

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 26, 2007

DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations