Tilings of nonorientable surfaces by Steiner triple systems

Tilings of nonorientable surfaces by Steiner triple systems A Steiner triple system of order n (for short, STS(n)) is a system of three-element blocks (triples) of elements of an n-set such that each unordered pair of elements occurs in precisely one triple. Assign to each triple (i,j,k) ∊ STS(n) a topological triangle with vertices i, j, and k. Gluing together like sides of the triangles that correspond to a pair of disjoint STS(n) of a special form yields a black-and-white tiling of some closed surface. For each n ≡ 3 (mod 6) we prove that there exist nonisomorphic tilings of nonorientable surfaces by pairs of Steiner triple systems of order n. We also show that for half of the values n ≡ 1 (mod 6) there are nonisomorphic tilings of nonorientable closed surfaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Tilings of nonorientable surfaces by Steiner triple systems

Loading next page...
 
/lp/springer_journal/tilings-of-nonorientable-surfaces-by-steiner-triple-systems-7UqQF2QnJU
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Engineering; Communications Engineering, Networks; Electronic and Computer Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946007030040
Publisher site
See Article on Publisher Site

Abstract

A Steiner triple system of order n (for short, STS(n)) is a system of three-element blocks (triples) of elements of an n-set such that each unordered pair of elements occurs in precisely one triple. Assign to each triple (i,j,k) ∊ STS(n) a topological triangle with vertices i, j, and k. Gluing together like sides of the triangles that correspond to a pair of disjoint STS(n) of a special form yields a black-and-white tiling of some closed surface. For each n ≡ 3 (mod 6) we prove that there exist nonisomorphic tilings of nonorientable surfaces by pairs of Steiner triple systems of order n. We also show that for half of the values n ≡ 1 (mod 6) there are nonisomorphic tilings of nonorientable closed surfaces.

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 26, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off